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These notes were prepared for students at Macquarie 

University in Australia but are freely available to 

anyone.  However if you make use of them and are 

not a Macquarie University student it would be nice if 

you could email me at 

christopherdonaldcooper@gmail.com to let me know 

where you are from.  And, if you are from outside of 

Australia perhaps you could send me a postcard of 

where you are from to pin up on my wall (Christopher 

Cooper, 31 Epping Avenue, EASTWOOD, NSW 

2122, Australia). 

 

I dedicate this book to Rachel Chalmers, whose email 

many years after she attended one of my courses 

encouraged me to write up those notes for publication. 

Rachel, I can barely remember who you were, but if it 

hadn’t been for your chance email this book would 

probably never have been finished. 

 
 

mailto:christopherdonaldcooper@gmail.com
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PRELUDE 
 

 Mathematics is the art of story-telling. Nobody 

has ever seen a perfectly round circle or an infinitely 

long line of zero width. They’re pure figments of the 

mathematical imagination. As for imaginary square 

roots of −1, ideal points where parallel lines meet, and 

6-dimensional space …! What fantasies can be dreamt 

up by the fertile mind of a mathematician! 

 Stories, parables, fables, myths and legends can 

carry profound truths that have a powerful impact on 

the lives we lead. Mathematical stories are no 

exception. This gossamer web we mathematicians spin 

might be pure fancy. But it’s the best tool we have to 

understand and predict the material universe. And it 

reaches far beyond. 

 In this book we’ll go on a journey to the edge of 

the rational universe. Our motivation will be that of an 

explorer. We simply want to know what’s out there. 

Whether any practical use can be made of what we find 

there is not our prime concern. This book is not written 

for the practitioner in logic or mathematics or 

computing science. 

 Having said that let me add that the inspiration 

for the book came from having to teach this material to 

embryonic mathematicians and computer scientists in 

several courses at Macquarie University. I began to 

realise that, stripped of some of the formal 

technicalities, much of the material I had taught to third 
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year students, to honours students and even to 

postgraduate students could be made accessible to a 

wider audience. 

 Material which had hitherto remained locked up 

in courses with such intimidating names as Advanced 

Algebra, Axiomatic Set Theory and Theory of 

Computation is too fascinating to leave there. All it 

needs is a little less emphasis on symbolic formality 

and a little more imaginative presentation. 

 That’s not to say that having read this book 

you’ll be on a par with the students who graduate from 

my courses. I like to think that what I’ve done is to 

build a road into a national park that has hitherto only 

been accessible on foot. 

I taught this material many years ago as a 

continuing education course for mathematical laymen 

(and laywomen) at Macquarie University. I even wrote 

an earlier, and much less complete, version of this book 

to give out to the students. And there it lay. 

More recently, many years later, I received an 

email out from one of those students. She had attended 

the course with her father and said how much she’d 

enjoyed it. In fact she said, “I was thinking last night, 

it’s still the best maths class I ever took, and one of the 

most fun things I ever did with my Dad.” I thought it 

went well, but surely that must be an exaggeration! 

However, it inspired me to dust off those old notes and 

fashion them into this book. 

 I’m certainly not the first to have attempted to 

bring deep ideas of logic and mathematics to a wider 

audience. Lewis Carroll was one of the first in Alice 
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Adventures in Wonderland – a book which delightfully 

introduces many ideas of logic. I have also been 

influenced by Abbott’s Flatland and the writings of 

Martin Gardener and Douglas Hofstadter. 

 The final chapter goes beyond transcendental 

mathematics to consider the philosophical/theological 

question of the existence of something beyond the 

material world and proofs of the existence of God. This 

isn’t a technical discussion of epistemology but rather 

a drawing together of some of the ideas in the earlier 

chapters. 

 After each chapter there’s a little treat – a story, 

poem or joke, reflecting the ideas developed in that 

chapter. These may or may not aid the understanding 

of the chapter but at least they provide some breathing 

space before the next one and hopefully maintain the 

whimsical frame of mind in which this material can 

best be appreciated.  

 

 This book isn’t for everybody. Is it for you? 

Here’s a check list. If you can answer “yes” to some or 

all of them then go ahead and read this book. 

 

(1) Are you intrigued by the logical reflexiveness of the 

sentence “this sentence is false? 

 

(2) Have you read and enjoyed Alice’s Adventures in 

Wonderland? 

 

(3) Can you cope with the symbols in the following? 
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Let P denote a computer program and let D denote 

some data on which it acts. Suppose we denote the 

output by P→D. So if P is a program for duplicating 

data then P→D = DD. And if such a program is given 

its own description to duplicate, we have the equation  

P→P = PP. 

 

(4) Would it interest you if one could prove the 

existence of God? 
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1. THE IMAGINARY 
 

§1.1. Mathematics and Truth 
 “What is truth?” 

asked a famous 

Roman governor. 

Indeed, what is truth 

and how are we to 

know it? When we 

were young we soon 

learnt to tell the 

difference between 

truth and lies. Indeed we learnt to tell lies almost as 

soon as we could talk. “It wasn’t me – Sarah did it!” 

 

 As we got older we learnt that things are not 

always what they seem. Optical illusions, and the 

sleight of hand of a magician, fascinated us. 

 

As adults we’ve learnt that truth can be relative. 

Things are not always black and white. Even lies can 

be all shades of grey from despicable black to the 

purest of white. 

 

 Of all the subjects that we learnt at school, 

mathematics is the one where truth is most clearly 

defined. “What I like about mathematics,” I’m often 

told, “is that things are either right or wrong – you 

really know where you stand.” 

WHAT IS TRUTH? 
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 Well, it’s true isn’t it? In our history essays it 

wasn’t so important what conclusions we reached, we 

were told, but rather how well we supported them. 

 

History isn’t just about names and dates and 

‘facts’ but more about explanations of why things 

happened the way they did. And your explanation may 

be quite different to mine yet be considered equally 

good. Even the facts of history undergo change as 

scholars revisit contemporary sources and discover that 

what we’ve been taught all these years was not actually 

the case. 

 

 Science is a very objective study, based as it is 

on observation and experiment. Yet how often has 

there been radical change there. The sun no longer 

travels round the earth as it did for centuries until 

Galileo. The atom is no longer an indivisible piece of 

matter. Light, which once travelled in a straight line, 

now curves in a gravitational field. 

 

 But the theorems of Euclid are still as valid as 

they were over two thousand years ago. With 

mathematics you know where you stand. Things are 

either true or false and when we prove that something 

is true that’s the end of the matter. Or is it? 

 

§1.2. Do Imaginary Numbers Exist? 
 People often ask “does God exist?” It’s generally 

agreed that one cannot prove that there is a God. Some 
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people talk about having faith and say that they believe 

in God. Atheists believe that he doesn’t. Agnostics say 

that you can’t tell, and leave it at that. 

 

 What has this to do with mathematics? One of 

the themes of this book is to reflect on the similarities 

between mathematics and religion. In terms of truth 

you might think that they are poles apart. In 

mathematics everything that is believed to be true can 

be proved while religious truth is purely a matter of 

belief. But things are not quite as simple as they sound. 

 

 Now this is a book about mathematics not 

religion, so that if it should change your ideas about 

religious belief that’s your own business. My main 

purpose here is to show that there are many 

mathematical truths that seem to be contrary to 

intuition and that even the concept of mathematical 

truth itself is not quite what you might have imagined 

it to be. 

 

The German mathematician Leopold Kronecker 

(1823 – 1891) once said “God created the natural 

numbers; all else is the work of man.” He meant that 

the so-called “natural numbers”, the ones that we count 

with, exist in an obvious way in the world around us. 

But fractions, negative numbers and decimals are 

artificial constructions. 

 

Mathematicians began to become bothered with 

existence of certain numbers in the 17th century when 
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they made up some new numbers. Up to then it was 

believed that you can’t have square roots of negative 

numbers. 

 

At this stage numbers were synonymous with 

points on the number line. In the ‘middle’ of an 

infinitely long line you have the number zero. To the 

left are the negative numbers and to the right are the 

positive ones. 

 

 

 

 

Whole numbers step out in both directions in 

uniform steps and fractions, and more generally 

decimals, fill in the space between them. To use the 

correct mathematical terms we have the integers 

represented by points made by equal sized steps and 

rational numbers, and more generally real numbers, 

fill up the number line. 

 

There are certain facts that can be proved about 

these numbers. One of these is that if you multiply two 

negative numbers you get a positive one. And of course 

if you multiply two positive numbers you get a positive 

one. 

 

It follows that negative numbers don’t have 

square roots. If you multiply a number by itself the 

answer will always be positive (or zero if you square 

4 3 2 1 5 −1 −2 −3 −4 −5 
 

0 
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zero). Here’s something which was once considered to 

be a true fact – but not any more! 

 

In the 17th century, in order to solve certain 

practical problems, mathematicians found it useful to 

invent square roots for negative numbers. These were 

called imaginary numbers because it was felt, useful 

as they are, that they didn’t really exist. The square 

roots of −1 were called i and −i, with the symbol ‘i’ 

being used to remind us that they are only ‘imaginary’ 

– they don’t really exist. 

 

But how did they reconcile this with the fact that 

if this imaginary number  i  is either positive or negative 

its square must be positive. How could it possibly be 

equal to −1? Well, who’s to say that this imaginary 

number  i  must be either positive or negative? Can’t it 

be neither? 

 

Today we live in a complex world where the 

simple axiom “everybody is either male or female” no 

longer holds. Why can’t non-zero numbers be neither 

positive or negative? But surely the point that 

represents a non-zero number must be either to the left 

or the right of zero. On a line there are only two 

directions, left or right. That’s true, but in a plane you 

can also go up and down. To accommodate these 

imaginary numbers we need to go into two dimensions. 

 

If we’re going to invent the imaginary number  i  

we must allow it to combine arithmetically with the 
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ordinary real numbers, so that we must invent numbers 

such as 2i and 3 + 2i. More generally we’ll have 

invented numbers of the form a + bi where a and b are 

ordinary real numbers. These are called complex 

numbers. The name ‘complex’ doesn’t refer to the 

level of difficulty but simply to the fact that these 

numbers have a complex structure, being made up of 

two parts. This diagram shows how every complex 

number can be placed on what is called the complex 

plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 It might seem a cheat when asked to add the 

numbers 3 and 2i and to be told that it is 3 + 2i. Is this 

the question or is it the answer? In fact it’s both. It’s 

not possible to simplify this answer. It is just like 

3 + 2i 

4 3 2 1 5 −1 i −2 −3 −4 −5 

−i 

2

 

3

i 

4

 

5

 

−2i 
−3i 
−4i 
−5i 
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asking someone to divide 2 by 3 and being told that the 

answer is 
2

3
 . 

Doing arithmetic with these complex numbers is 

not difficult. To add 3 + 2i to 5 + 7i we get 8 + 9i.  And 

(2 + 3i)(5 + 7i) = 10 + 14i + 15i + 21i2. Remembering 

that i2 = −1 we can simplify this to 10 + 29i − 21 = −11 

+ 29i. Division is a little bit trickier. 

 

These complex numbers proved to be extremely 

useful. Indeed modern electronics couldn’t exist 

without them. But the philosophic question remains 

“do these imaginary numbers really exist?” 

Mathematicians used to struggle over such questions 

but the modern mantra is “if it doesn’t exist then you 

just invent it”. 

 

So when faced with fact that parallel lines in a 

plane don’t meet, mathematicians just invented new 

points where they do meet and so created a new 

geometry called the Projective Plane. There’s a sense 

in which mathematics is just a game of make-believe! 

But it has proved to be such a useful make-believe that 

we don’t fuss about whether these made up entities 

exist. It’s a non-question. 

 

Many people say that God is just something 

made up by people in order to explain the natural 

phenomena such as thunder (that was before science) 

or to make sense of their lives.  Others say that God 

existed long before man was capable of thinking about 
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things. I leave it to you to make your mind up on that 

matter. I just want to point out that many 

mathematicians when they make up some 

mathematical entity that proves to be useful they get an 

uncanny feeling that they’re not inventing but rather 

discovering something that was already there. In some 

sense complex numbers existed before the world 

began. If there’s an advanced civilization on some far 

distant planet they will also have ‘invented’ complex 

numbers in one form or another. 

 

§1.3. Mathematics Contains No Facts 
 Mathematics is the subject par excellence when 

it comes to logical foundations. Yet in another sense 

mathematics isn’t about truth at all – certainly not in an 

absolute sense. When we prove that the angles of a 

triangle add up to 180 we think we’ve proved an 

absolute truth about the real world. Not so! 

 

 Mathematics is not about absolute truth (if there 

is such a thing) but rather about relative truth. 

Everything in mathematics is based on definitions and 

fundamental assumptions. Take the case of the angle 

sum theorem we’ve just mentioned. Quite apart from 

needing to define angles and triangles and addition we 

must accept the axioms on which the proof of the 

theorem is based. 

 

 Euclid began by setting down some basic 

axioms, or assumptions. Some of these were attempts 
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at definitions, others were considered as “self-evident 

truths”. Clearly, through any two distinct points there’s 

exactly one straight line. You don’t need to prove it – 

you can see that it’s obvious. If anyone is so obtuse as 

to say they don’t agree with it you simply have to ask 

them to put two points on a piece of paper and draw 

two different straight lines between them. 

 

 But our grounds for accepting this axiom are 

rather shaky. We’re arguing as a physicist might. We 

carry out many experiments with points and lines on a 

sheet of paper and are never able to construct two 

straight lines between the same two points. I’m not 

belittling the scientific method, but if we allow it to 

operate within geometry we may just as well go off and 

measure lots of triangles and conclude the truth of the 

angle sum theorem by experiment. 

 

 We might argue that light travels in straight lines 

so a ray of light that begins at point A and is seen at 

point B must have gone along a single path. Imagine if 

the light had to make up its mind as to which straight 

line to follow! 

 

 

 

 

 

 Unfortunately we now know that light doesn’t 

always travel exactly in straight lines. The more 

gravitation is around the more curved the path. And as 

A B 
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for light not being able to make up its mind as to which 

path to follow, even stranger things have been observed 

in the laboratory since the advent of quantum physics. 

 

 Another fundamental ‘truth’ is that if we have a 

straight line, and a point off that line, there’s exactly 

one line passing through the point parallel to the given 

line. It is on the basis of this that the Angle Sum 

Theorem is proved. 

 

 

 

 

 

 

 

 Now experimental evidence for this ‘fact’ is very 

strong. But remember that drawing lines on a piece of 

paper is neither particularly accurate nor particularly 

general. Perhaps two lines can be drawn, so close to 

each other that you’d only notice the difference if they 

were drawn with considerable precision and the sheet 

of paper was many light years across. Indeed there’s 

speculation that the geometry of space doesn’t quite 

follow Euclid’s axioms. 

 

 How do mathematicians cope with all this? 

Scrap thousands of years of Euclidean geometry? Not 

at all! “There’s nothing wrong with Euclidean 

geometry,” they say. “If the axioms hold then so do the 

theorems. It’s the job of the cosmologist to decide 
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whether the axioms are true for our universe, not the 

mathematician!” 

 

What mathematicians did do, when it was 

discovered that this ‘fact’ didn’t follow logically from 

the other axioms, was to develop non-Euclidean 

geometries where there can be more than one line 

through two distinct points, or none at all. So by the 

time physicists began to doubt whether our universe 

followed Euclidean geometry there was a mature study 

of non-Euclidean geometry for them to choose as an 

alternative. 

 

§1.4. The Disembodied Angel 
 Mathematics isn’t about absolute truth. 

Mathematicians create stories about imaginary 

systems. Each one is logically consistent but it’s up to 

the physicist, or economist, to select one off the shelf 

to fit their observations. 

 

If the universe were to disappear tonight, physics 

and chemistry would be no more. Biology and 

psychology would disappear, not to mention 

economics. Of all branches of learning only 

mathematics (and perhaps theology) would remain! It’s 

a nice thought, though whether logic exists outside the 

hard-wiring of the human brain is yet another question. 

But certainly a mathematical truth shouldn’t be 

dependent on physical observation. After all we must 

think of the disembodied angels! 
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Years ago one of my colleagues, Alan 

Macintosh, had to teach an advanced class in geometry. 

To emphasise the fact that geometry can be studied 

without recourse to spatial intuition he had a pair of 

walkie-talkies (these day’s he’d use mobile phones). 

An accomplice was positioned in the next classroom 

with one handset and Professor Macintosh had the 

other. A student from the class was chosen and was 

given the job of explaining some geometrical concept 

to the ‘disembodied angel’ in the other room. The idea 

was that the ‘angel’ was infinitely intelligent but had 

no concept of space, living as she did in a purely 

spiritual realm. The results were quite amusing. 

 

 Mathematics has reached the level of maturity 

that it can now be taught to disembodied angels! That 

is, when studying it at an advanced level, students are 

required to empty themselves of all their intuition 

concerning number, space and even sets. The 

fundament objects of study are to be considered as 

undefined entities. We have to capture our intuition by 

writing down our assumptions as axioms. They might 

be self-evident to us but not to disembodied angels. 

Both they and we accept these axioms and proceed 

from there. At no time in the proofs of our theorems 

must we fall back on intuition. Everything must 

proceed using the tools of logic. 

 

 That’s not to say that intuition has no place in 

modern mathematics. Mathematicians are not 

machines that manipulate symbols mindlessly to create 
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theorems. There’s an old joke that mathematicians are 

machines for turning coffee into theorems but this 

perhaps reflects the fact that coffee may help to 

stimulate a mathematician’s intuition. What happens is 

an interaction between intuition and logic. An intuitive 

insight causes a mathematician to ‘see’ that such and 

such must be true. He, or she (women are now quite 

active in the world of research mathematics), will then 

set out to prove the fact, using sound logic. Sometimes 

they will fail, but their efforts will help them to see that 

they were wrong. More often than not they will be able 

to prove that they were right. Either way the struggle 

towards a proof will strengthen their intuition. 

 

 For some laymen, the phrase ‘mathematical 

research’ is an oxymoron. I am often asked “Hasn’t 

everything in mathematics been discovered a long time 

ago?” Well, mathematics may not be quite the oldest 

profession but it comes close. It’s probably the oldest 

academic profession. 

 

 Mathematics has been building for thousands of 

years. And because it’s highly structured you can only 

understand the more recent bits once you understand 

the earlier bits. So all of the mathematics you learnt at 

school, even at the most advanced level, would be a 

couple of hundred years old. If you continued on to 

university mathematics you might be brought up to the 

end of the nineteenth century, with a couple of 

exceptions, though you’d still learn only a tiny fraction 

of what was known to that point. 
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 But mathematics has been producing new 

theorems, even whole new branches, at an ever 

increasing rate. Some years ago, before reviews of 

mathematical papers went online, Mathematics 

Reviews was putting out monthly volumes, each the 

size of a small telephone book, that contained short 

summaries of the more important mathematics papers 

that had been published that month in research journals 

around the world. 

 

§1.5. Propositional Logic 
 So mathematics is founded on logic and uses its 

tools to create proofs. What are the tools of logic? To 

begin with we consider things called ‘statements’ or 

‘propositions’. We could regard a statement as an 

undefined entity but it helps to think of it as a sentence 

for which it is meaningful to say that it is true or that it 

is false. Statements have things called ‘truth values’ – 

TRUE and FALSE. 

 

 Not every sentence is TRUE or FALSE. “Come 

here!” is a command, not a statement.  But even things 

that look like statements might just be pretending. 

Consider the sentence: “THIS STATEMENT IS 

FALSE”. 

 

If it’s TRUE then it’s FALSE and if it’s FALSE 

it must be TRUE. So it can be neither TRUE nor 

FALSE. This doesn’t invalidate logic – it simply means 
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that “THIS STATEMENT IS FALSE” isn’t really a 

statement. 

 

 The reason why “THIS STATEMENT IS 

FALSE” can’t be considered a statement is because it 

is self-referential – that is it refers to itself. A similar 

situation exists if we have a collection of statements 

that refer to other statements, but where the references 

go around in a circle such as: 

 

 

 

(1) Statement (2) is FALSE 

(2) Statement (3) is FALSE 

(3) Statement (1) is FALSE 

 

 

 

If any of these is TRUE, the next, around the circle is 

FALSE. 

If any of these is FALSE, the next, around the circle is 

TRUE. 

 

 So the TRUE and FALSE tags must alternate, 

which around a circle with an odd number of points is 

impossible. 

 

 You might think that the recipe to avoid such 

paradoxes is to insist that no statement is allowed to 

refer to itself either directly or indirectly. But there are 

instances where there’s no hint of self-referentiality 

(1) 

(2) (3) 
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and where we still get such a paradox. We’ll see such a 

system in a later chapter. This shows that it’s very 

difficult to define what is meant by a statement. 

 

 We represent statements by lower case letters p, 

q, … It’s just like algebra except that the symbols stand 

for statements instead of numbers. The only property 

of a statement that logic can deal with is its truth value. 

Whether the statement is long-winded or amusing, or 

contains a certain four letter word, lies outside the 

realm of logic. So you can think of the variables p, q, r, 

… as undefined entities having one of two possible 

values T or F (shorthand for TRUE and FALSE). 

 

 Logic thrives on constructing complex 

statements from simple ones, and then asking whether 

the complex statement is true or false. It does this using 

‘logical operators’. 

 

 The basic one is ‘not’. When we say ‘not p’ we 

mean the statement ‘p is FALSE’. So if p is TRUE then 

not p is FALSE but if p is FALSE then not p is TRUE. 

 

For example, if p = “2 + 2 = 4” then 

not p = “2 + 2  4”. 

Here p is TRUE while not p is FALSE. 

 

If q = “3 > 9” then not q = “3  9”. 

Here q is FALSE and not q is TRUE. 
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If  g = “God exists” then  not g  = “God does not 

exist”. In this case you must decide for yourself 

whether  p  or  not p  is TRUE. We can’t have both 

being TRUE and our logic insists that at least one of 

them is TRUE. (There are other logics that logicians 

study where statements may be neither, but 

mathematicians are usually intuitive about our logic.) 

 

Two statements p and q can be combined in 

several ways: “and”, “or” or “implies”. 

 

The complex statement  p and q  means what it 

says – we assert that both of them are TRUE. We can 

express this to a disembodied angel by means of a table 

that sets out the truth value of  p and q  under all four 

combinations of the truth values of p and q separately. 

Such an angel doesn’t need to have any concept of what 

‘TRUE’ means. 

 

p and q 

p  q→ T F 

T T F 

F F F 

 

 Sometimes we say p but not q. We might say 

“mathematics is interesting but economics is not”. Here 

‘but’ just means ‘and’, at least at the basic level of 

logic. There may be overtones of surprise or contrast 

but such subtlety is beyond basic logic. 
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So if p is “mathematics is interesting” and q = 

“economics is interesting” then what we’re saying can 

be encapsulated in symbols as p and not q. 

 

Or we might say p or q. Here our intuitive grasp 

of the word ‘or’ can more or less define what we mean. 

But there’s some ambiguity. There is the exclusive ‘or’ 

and the inclusive ‘or’. 

 

 At a party, if we’re offered a glass of wine, and 

are asked whether we want red or white, our host would 

be quite taken aback if we said “both”. Here the word 

‘or’ is used in a polite sense, that is, it means the 

exclusive ‘or’. But mathematicians are impolite. We 

reserve the right to say “both” – perhaps not in a social 

situation but in our mathematics. When we say “x = 0 

or y = 0” we include three possibilities: 

(1) x is zero but y is not, 

(2) y is zero but x is not, 

(3) they are both zero. 

Of course there are situations when we need to be 

exclusive, but then we’d have to spell it out: p or q and 

not(p and q). 

 

For the benefit of the disembodied angel we 

should simply set out our meaning in a table. 

p or q 

p  q→ T F 

T T T 

F T F 
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 The third logical operator is rather more 

confusing: “if p then q”. We call this ‘implication’ but 

we don’t mean to imply any causal connection between 

the two – simply a connection between their truth 

values. 

 

Let’s see how far our intuition might go to 

defining implication. In the case where p is TRUE and 

q is TRUE then of course we want “if p then q” to be 

TRUE. True statements imply true statements. 

 

And in the case where p is TRUE and q is 

FALSE we want “if p then q” to be FALSE. True 

statements don’t imply false ones. 

 

 What do FALSE statements imply? We may be 

tempted to say “nothing”. In other words we may think 

we want “if p then q” to be FALSE whenever p is 

FALSE. But do we? Look at the table that would result 

from that decision. 

 

p  q→ T F 

T T F 

F F F 

 

 Our disembodied angel would say, “This is the 

same table that you gave me for ‘and’. Do you mean 

that ‘if p then q’ is just a complicated way of saying ‘p 

and q’?” 
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Rather than try to tease anything more out of our 

intuition we’ll simply present the correct table and be 

done with it. As Humpty Dumpty said in Alice’s 

Adventures in Wonderland, “When I use a word it 

means just what I choose it to mean.” Just accept that 

in mathematics “if ... then” means this. 

 

if p then q 

p  q→ T F 

T T F 

F T T 

 

 But surely it’s wrong, surely, to have a FALSE 

statement implying anything! There’s a technical 

explanation that doesn’t become apparent until we 

meet quantifiers. At this stage just pretend that you’re 

a disembodied angel and simply accept the table. 

 

§1.6. Quantifier Logic 
 Here we move up to the next level of logic. It’s 

going to involve some symbols so perhaps you’re ready 

to skip to the end of the chapter. By all means, if you’ve 

got symbol phobia, then do just that. But let me 

encourage you to persist. Just remember that symbols 

are just short words and have to be read more slowly 

than most text. 

 

In a short while we’ll encounter the sentence 

x2 − y2 = (x + y)(x − y). 
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Perhaps you might call it an “equation” but equations 

are really sentences. They have verbs and nouns. The 

verb in an equation is the symbol “=” that is shorthand 

for “equals”. The nouns in the above sentence are x and 

y. 

 

Shortly we’ll we introducing the strange symbol 

‘’. Roughly speaking it’s shorthand for ‘all’. We 

could write cats, meaning ‘all cats’. So a complete 

sentence could be: cats are cute. 

 

More precisely,  is shorthand for ‘for all’. What 

follows is a variable, so ‘x’ stands for ‘for all x’. Now 

on its own this doesn’t make sense. It must be followed 

by a statement about x. So x[x is cute] asserts that all 

x’s are cute. But not everything is cute. We need to 

limit the x’s to come from some ‘universe of 

quantification’. We don’t normally incorporate this 

into our notation but we have to have some sort of 

context that implies what this is. For example if we 

were discussing arithmetic we would be assuming that 

x is a number. 

 

Perhaps you don’t like symbols and would prefer 

to have everything spelt out in words. For example we 

could avoid using symbols and write the statement: 

 

xy[(x2 − y2 = (x + y)(x − y)) 
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as ‘if you take any two numbers and subtract the second 

number squared from the first number squared you’ll 

always get the same answer as if you had added the sum 

and difference of the original two numbers and then 

multiplied the sum by the difference.” Do you really 

think that this makes it any easier to understand? 

Symbols are used in mathematics not to scare away the 

uninitiated but to make life easier. 

 

 The quantifier  is called the ‘universal 

quantifier’. The other quantifier is the ‘existential 

quantifier’. It is written  and is shorthand for ‘for 

some’. So x means ‘for some x’. 

 

 If the universe of quantification consists of all 

human beings we might write x[x can run a mile in 

under 4 minutes] to mean that some human can run a 

four-minute mile]. In fact there are quite a few possible 

x’s – the x does not have to be unique. 

 

 In todays world this is a TRUE statement, but in 

the early part of the twentieth century it was FALSE.  

Of course the truth of a statement shouldn’t be time-

dependent. We should be more precise in defining the 

universe of quantification. If it is the set of all humans 

alive in 1920 the statement is FALSE, but if it is the set 

of all humans alive in 2020 it is TRUE. 

 

We could also consider the statement: 

x[x can run a mile in under 3 minutes]. 
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We could also consider the statement: 

 

x[x can run a mile in under 3 minutes]. 

 

If the universe of quantification is the set of all humans 

who were alive in 2020 this would be FALSE. If it was 

the set of all humans who have ever lived or who will 

ever live in the future we can’t decide whether this is 

TRUE or FALSE. 

 

 If the universe was the set of all mammals alive 

today then it is most certainly TRUE as there are 

animals in the cat family wo can run a mile in well 

under two minutes. 

 

 We might write x[x + 2 = 0], meaning, if our 

universe of quantification is the universe of all 

numbers, that there is some number which when added 

to 2 gives zero. There is only one such number, namely 

−2. 

 

You might be scared of these two strange 

symbols that are used to represent quantifiers. But 

quantifiers themselves are things you use in everyday 

speech. It’s just that you probably don’t know the 

technical jargon for them, or the symbols that represent 

them. 

 

Without “quantifiers” there would be no 

mathematics.  Come to think of it, without quantifiers 
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our everyday conversation would be at the level of a 

caveman’s grunt. 

 

“Children of today don’t know what hardship 

is”. Here we’re not referring to a particular child but to 

children in general. “Someone’s taken my icecream out 

of the fridge!” There you have the two types of 

quantifier. You use them all the time! 

 

In mathematics we mostly make general 

statements involving variables. It wouldn’t be edifying 

to come across a theorem that said “3456 + 9876 = 

9876 + 6543”. It’s not a theorem we’d use very often! 

On the other hand there is a theorem that says: 

 

x + y = y + x. 

 

Now notice that here we have two variables x 

and y. What’s implied by this is that we can substitute 

any number for x and any number for y and we get a 

true result. 

52 − 42 = 25 – 16 = 9 = 9 × 1 = (5 + 4)(5 – 4). 

92 − 72 = 81 – 49 = 32 = 16 × 2 = (9 + 7)(9 – 7). 

102 − 12 = 100 – 1 = 99 = 11 × 9 = (10 + 1)(10 – 1). 

32 – 52 = 9 − 25 = −16 = 8 × (−2) = (3 + 5)(3 – 5). 

 

Such a theorem is much more useful than a 

specific one without any variables. It represents 

infinitely many individual true statements all at once. 
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To make it clear that we mean for x and y to 

represent any number we can use the universal 

quantifier and write: 

 

xy[x + y = y + x]. 

 

But mathematicians get lazy and often leave out 

universal quantifiers. Any free variable in a statement 

is assumed to be bound by the universal quantifier. 

 

 Things get interesting when we get mixtures of 

quantifiers. Suppose xLy represents some statement 

involving two variables. Is there any difference 

between xy[xLy] and yx[xLy]? Can quantifiers be 

swapped around just like numbers in a multiplication 

problem? 

 

Well, suppose that L represents “loves” so that 

xLy means ‘x loves y’. If x = your mother and y = you, 

then hopefully xLy is TRUE. 

 

Now we need to specify our universe of 

quantification. Let’s make it as general as possible as 

consisting of all beings, alive or dead, who are capable 

of loving. Consider what statements you can get by 

putting quantifiers in front of xLy. 

 

 To say xy[xLy] would be to make the rather 

optimistic claim that everybody loves everybody. At 

the other extreme is the cynical claim that 
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xy[xLy].Somewhere, somebody loves somebody. 

The world is not totally devoid of love. 

 

What about mixtures of universal and existential 

quantifiers? 

 

yx[xLy] says that for all y there is somebody 

x who loves them. Nobody is unloved. I’m sure you 

would agree that is, rather weak, statement is TRUE. 

 

 But swap the quantifiers around and we get: 

 

xy[xLy] 

 

 This is almost the theological statement that God 

exists, for it asserts that there exists a being who loves 

everybody. You may believe that this is FALSE, but 

even if, like me, you believe that it is TRUE you must 

admit that it’s a much stronger statement than 

yx[xLy]. 

 

 It’s amazing! You made it to the end of the 

chapter! It wasn’t quite so readable as Alice’s 

Adventures in Wonderland was it? The difference is 

that Lewis Carroll was content with throwing 

fragments of logic around in his delightful story. My 

aim is more ambitious. I want to take you on a real 

mathematical journey.  The stories and poems between 

the chapters are just resting places. 
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And I hope you weren’t put off by all the 

symbolic expressions. The secret is not to read 

mathematics as you’d read a novel. When you come to 

a symbolic expression you need to slow down and 

examine it symbol by symbol. It’s a well-known fact 

that when reading English prose your eye can easily 

ignore a spelling error. You read whole words and if 

the word is mispelt you may not even notice.  (I bet you 

didn’t even notice that “misspelt” was missing an “s”.) 

 

Anyway, your brain now needs a rest.  That’s the 

reason for the following Humpty Dumpty poem. 
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A POEM: HUMPTY 

DUMPTY 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
There existed an egg who sat on a wall, 
And the wall being short implies this story is tall. 
Now if that fat egg had had a great fall 
Or slipped off the top, but not jumped, then not all 
The king's horses and all the king's men, 
If they worked through the day and the evening, then 
They could not succeed if and only if when 
They attempted to put Humpty together again. 
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 43 

2. THE IMPOSSIBLE 
 

§2.1. Nothing is Impossible!? 
 It’s impossible! It can never be done! Dangerous 

words! How often has the short-sightedness of man 

placed limits on what can be achieved? 

 

 Man will never fly in a heavier-than-air machine 

and certainly will never stand on the moon. Total 

‘impossibilities’ yet we’ve seen them come about. 

Computers will never be able to play a game of chess 

to grand-master standard. Yet it has happened. 

 

 But of course some things are eternally 

impossible. As children we grappled with the idea of 

the impossible. 

 

 “Bet there’s 

nothing God can't 

do.” 

 “Bet there is.” 

 “What, then? 

Bet you three 

marbles you can’t think of something God can’t do.” 

 “He can’t make 2 plus 2 make 5.” 

 “Yeah, but that's not possible. I mean God can 

do anything that's logically possible.” 

 “So he could lift up the world?” 

 “Sure, he could even lift up the sun with his little 

finger!” 
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 “Well then, is he able to find something so big 

he can’t lift it?” 

 “But that’s impossible.” 

 “No it’s not. I can easily find something so big 

that I can’t lift it, so why can’t God?” 

 

 Now of course there’s nothing impossible about 

something being logically impossible. We can all make 

up problems that have no solutions. And if a problem 

is impossible it’s important to know that, otherwise we 

can waste a lot of time. 

 

 This book is about a lot of impossible things. The 

more important of them have helped to delineate the 

boundaries of rational thought. Because they involve 

things close to the limits of human reasoning we may 

from time to time look over the fence into philosophy, 

but our feet will stay firmly on the side of logical 

thought as we dabble in the mathematics at the edge of 

the rational universe. 

 

§2.2. The Domino Puzzle 
 How are we able to prove 

that a problem has no solution? 

The most obvious way is to 

check through, and eliminate, 

every possibility. But how can 

we prove that something is 

impossible if there is an 

enormous number of possibilities? Get a computer to 
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do the checking? But what if there are infinitely many 

possibilities? 

 

 The following puzzle involves a huge, but finite, 

number of possibilities, though it could easily be 

adapted to one with an infinite number. 

 

 Take 31 dominos and place them on a 

chessboard (each one covering two adjacent squares) 

so that the two squares that remain uncovered are at 

diagonally opposite corners. At first sight the following 

appears to be well on the way to a solution but closer 

inspection reveals that it can’t be completed. 

 

 

 That doesn’t prove it is impossible of course. It 

may simply mean we started wrongly.  But what an 
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enormous number of possible ways of starting we’d 

need to check! 

 

 We might try unsuccessfully for quite some time 

and declare in disgust that “it’s impossible” but the 

nagging thought would remain, “maybe just one more 

try will do it”. 

 

 Yet it is indeed impossible. You can take that as 

a challenge if you wish, but you’re really wasting your 

time. It’s known to be impossible, not because many 

have tried and failed and not because a computer has 

worked through every conceivable possibility. It has 

been proved to be impossible. And the proof involves 

a clever but exceedingly simple idea. 

 

 Use a chessboard pattern of black and white 

squares. Each domino must, of course, cover one black 

square and one white one. The 31 dominos therefore 

cover the same number of black and white squares and 

so the two remaining squares must be of opposite 

colours. But diagonally opposite corners of a 

chessboard, as every chess player knows, have the 

same colour. A contradiction is reached if a solution 

were to exist. So of course no solution could possibly 

exist.  
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§2.3. Proof By Contradiction 
 Not every proof of impossibility is as short and 

transparent as this one. But they all rely on the simple 

idea that any assumption that leads to a contradiction 

must be false. 

 

 We begin by assuming that whatever we’re 

trying to prove impossible is in fact possible. We then 

attempt to use logic to reach a contradiction, that is, 

something which is both true and false. If we succeed 

in producing this nonsense we know that our 

assumption of possibility must be false and we’ll have 

proven impossibility. 

 

 Some people get worried about the validity of 

this type of reasoning. “You can’t make assumptions in 

proofs.” It’s true that if you’re allowed to assume that 

what you’re trying to prove true is true, then naturally 

you’ll succeed all the time, no matter what you’re 

trying to prove. 

 

 Assume that the moon is made of green cheese. 

Therefore if you land on the moon and dig up a sample, 

it will be green in colour, and will have a strong cheesy 

flavour. Therefore the sample will be green cheese. 

And if you repeat this experiment at numerous other 

locations on the moon you must get the same result. 

Hence the moon is made of green cheese! But of course 

that proves nothing. We might get away with such a 

fallacy if our chain of arguments is so long that our 
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listener forgets what we’d assumed in the first place. 

But fallacious reasoning it is, nevertheless. 

 

 So of course it is fallacious to assume what 

you’re trying to prove. But that’s not what we’re doing 

in a proof by contradiction. In such a proof we’re 

assuming that what we’re trying to prove is false, or 

that the so-called impossible is in fact possible. And 

that’s a totally different thing. 

 

 Proof by contradiction is not some esoteric rule 

thought up by logicians or mathematicians. It’s just 

ordinary common sense that we use all the time. “You 

couldn’t have put the milk away because it’s still on the 

bench.” Analysing the logic behind this assertion we 

find that it’s a proof by contradiction. 

 

Theorem: You didn’t put the milk away. 

Proof: Suppose that you did put the milk away. 

Then the milk is in the 

refrigerator. 

[Here there’s the unspoken 

assumption that no-one else has 

been around to take it out again.] 

But the milk is still on the bench 

and so is not in the fridge. 

[That we are talking about the 

same bottle is another unspoken 

assumption.] 

Contradiction! Therefore you did not put the milk 

away. 
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 You, the accused, might still dispute this 

argument. Nothing in life is quite as clear-cut as in 

mathematics. But the only way you could validly attack 

it would be to draw out and dispute one or other of these 

unspoken assumptions. The underlying logic of the 

argument itself is perfectly sound. 

 

 Impossibilities are everywhere, not just at the 

edges of rational thought. Before we journey out to the 

uttermost parts of the rational universe we’ll look at a 

number of other perfectly ordinary impossibilities. 

Some are quite famous in the history of mathematics. 

Others are mere curiosities. Our purpose in examining 

them is to help us feel quite at home with proof by 

contradiction because that’s the tool we’ll need on our 

journey. 

 

§2.4. The Square Root of 2 is Irrational 
 An irrational number isn’t one which is crazy. It 

simply means one which cannot be expressed exactly 

as a ratio of two whole numbers, like 2/3 or 22/7. 

Ratios have a geometric significance. The Greeks were 

able to divide any given line in any ratio of two whole 

numbers. 

 

 For example to find the point which is two thirds 

of the way along a given line segment, you construct a 

second line from one end of the first and mark off three 

equal lengths (with a compass, of course — using 

rulers to measure was considered unacceptable). 
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 The third point is joined to the other end of the 

original line segment and other lines are drawn parallel 

to it as in the following diagram. If you remember from 

school how to draw parallel lines using ruler and 

compass, well and good. If you’ve forgotten, it doesn’t 

matter. There is a way. 

 

 

 

 

 

 

 

 

This can be easily adapted to construct a line segment 

that is any rational multiple of the one given. 

 

 But the Greeks soon learnt of a theorem that’s 

associated with the name Pythagoras. The square on the 

hypotenuse is equal to the sum of the squares on the 

other two sides. Construct a square (which the Greeks 

could do easily, using their rulers and compasses) and 

by this famous theorem the length of the diagonal of 

the square must be 2 times the length of the side. 

(Diagonal squared = 12 + 12 = 2.) 
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 Since the only numbers that existed at that time, 

or rather the only numbers that had been invented, were 

rational numbers, it was obvious that 2 had to be the 

ratio of two integers. It simply remained to find the two 

integers. 

 

 The rational number 10/7, when squared, gives 

2.04..., which is close to, but not exactly equal to, 2. A 

better approximation is given by 1393/985. Its square 

is 1.9999989... very much closer. Try 8119/5741. 

 

 Then came the embarrassing truth. They 

discovered an argument that demonstrated the 

impossibility of finding such integers. No rational 

number gives exactly 2 when squared.  So here was a 

line which had no length! That can’t be! To get around 

this difficulty, new numbers had to be invented. 

 

Theorem: 2 is irrational 

Proof: Suppose that, on the contrary, it is rational. 

(Here’s a classic Proof By Contradiction.) 

Let m and n be the two whole numbers whose ratio, 

when squared, gives exactly 2. 

Then 






m

n
 
2

 = 2. 

But this means that 
m2

n2  = 2 and so m2 = 2n2, that is, m2 

must be exactly twice as big as n2. 

 Now consider the number of factors of 2 which 

divide these numbers. However many factors of 2 there 
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are that divide n, clearly exactly double that number 

divide n2. In fact the number of factors of 2 in any 

perfect square, n2 or m2, must be even. But that means 

an odd number of factors of 2 divides 2n2 and an even 

number dividing m2. This can’t happen if they’re equal! 

 

 This contradiction rests firmly on a single 

assumption − that 2 is rational. This assumption 

cannot stand. The square root of 2 must be irrational. 

 

 Now a professional mathematician might argue 

that this proof relies on the Unique Factorisation 

Theorem for whole numbers: There is essentially only 

one way of factorising a whole number and the number 

of factors of 2 will always be the same. He will argue 

that there is a more basic proof that avoids the need to 

assume the Unique Factorisation Theorem. 

 

 However I have found that most people find it 

harder to follow than the above proof. Remember that 

I’m not trying to develop number theory but rather to 

explain the concept of Proof By Contradiction. 

 

§2.5. It is Impossible to Trisect a Given 

Angle by Ruler and Compass 
 One of the famous classical impossibilities 

concerns ruler and compass constructions. This type of 

geometric construction was a highly developed art 

form in the time of the ancient Greeks because for 

them, arithmetic was built on the foundation of 
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geometry. Ruler and compass construction was as 

important a tool then as the calculator is today. 

 

 The ruler wasn’t used to measure lengths. In fact 

any straight edge would do. What the Greeks had 

against measurement was that it wasn’t exact. No 

matter how fine the divisions, a length may fall 

between two of them and the human eye is called upon 

to estimate. 

 

 The Greeks were intoxicated by perfection. Any 

method had to be theoretically exact. And this they 

could achieve with straight-edge and compass – at least 

for many problems. 

 

 They could, for example, bisect any given angle. 

Most school pupils learn how to do this. With the 

compass point on the vertex of the angle, draw an arc 

cutting the two arms of the arc at points A, B. Now with 

any convenient radius (but the same for each) draw 

intersecting arcs, one with A as centre and one with 

centre at B. Joining the intersection of these arcs to the 

vertex of the angle exactly bisects the angle. 

 

 

A

B  
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 The method is mathematically exact. Using 

theorems of congruent triangles one can prove that the 

two angles created at the vertex are equal, each exactly 

half the original. Of course to do it in practice, no 

matter how carefully you carry out the construction, all 

sorts of little errors creep in. But the method is 

mathematically exact. 

 

 Lines of any given length can be bisected by a 

similar construction. Here the centres of the arcs are the 

endpoints of the line. 

 

 

 

 

 

 

 

 

 

 

 

 What was really tantalising was that although 

lines can be trisected (3 equal pieces) there appeared to 

be no method for trisecting angles. This really 

disturbed them because it was obvious to them that it 

could be done. Why should there be any difference? 

Aren’t lengths and angles just different geometric 

manifestations of the same numbers? 
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 Much effort went into looking for such a 

construction without success. All was wasted effort. 

Many, many centuries passed before a proof that such 

a construction is impossible was discovered. It’s too 

technical to present here, but it’s worth pointing out 

that, like many proofs of impossibility, the 

breakthrough came by cleverly converting the problem 

to one involving whole numbers. 

 

 In the trisection case, there’s a number which 

can be associated with any ruler and compass 

construction called the “degree of the corresponding 

field extension”. Never mind what that means. Suffice 

to point out that it starts at 1 and with each stage in a 

ruler and compass construction it either remains the 

same or it doubles. So only exact powers of 2 are 

possible: 1, 2, 4, 8, 16, ... 

 

 But it can be shown that a method which trisects 

a 60 degree angle, must be capable of producing a field 

extension whose degree is exactly 3. Clearly 3 is not a 

power of 2 and so we get a contradiction if we assume 

that angle trisection is always possible. 

 

§2.6. Scribbles 
 Draw a scribble. By this I mean a continuous 

line which crosses itself many times and ends up where 

it starts. Oh, and you are not allowed to pass through a 

previous crossing. 
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 You’ll have a number of crossings where two 

parts of the scribble cross over. Start at any crossing 

you like and number them in order: 1,2,3, ... When you 

visit a crossing you must give it a second number. 

Continue until all crossings have been given two 

numbers. 

 

1,10

2,5

3,16
4,17

6,11

7,14
8,13

9,18

12,15

 
 

 Now a double crossing is one where one of its 

two numbers is double the other and a triple crossing 

is one where one of its numbers is three times the 

other,. There's no difficulty in producing double 
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crossings. This scribble has two of them: 7, 14 and 9, 

18. But there are no triple crossings. 

 

 Can we create a scribble which includes at least 

one triple crossing? It might have to be an exceedingly 

complicated scribble with millions of crossings, one of 

which might be a crossing labelled as (123123, 

369369). 

 

 The problem can’t be solved. There is no 

solution. You might like to try to find one just to get 

the ‘feel’ of it, but don't try too hard because the puzzle 

is really quite impossible. But how can we be sure of 

this? After all there’s no limit to the complexity of the 

scribble so it’s just not possible to check all cases. 

 

§2.7. Why No Triple Crossings? 
 Suppose it can be done. (Notice that we’ve 

started in the usual way for a Proof by Contradiction.) 

Then we’d have a (k, 3k) crossing somewhere. We visit 

when the count is k and revisit when the count has 

reached 3k. 

 

Question: How many times will we pass a crossing 

between these two visits? 

 

Answer: An odd number of times. 

 

 This might seem wrong because the difference 

between k and 3k is 2k which is even. But think again. 
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How many numbers are there between 4 and 12? Do 

you think there are 8, because 12 − 4 = 8? No, there are 

only 7 numbers between 4 and 12. They are 5, 6, 7, 8, 

9, 10 and 11. When we subtract 4 from 12 and get 8 

we’re counting the one-unit sections between 4 and 8. 

But the number of dividing points is never equal to the 

number of sections. It’s always one more if we’re 

counting both ends and or one less if we’re not (as in 

this case). 

 

 

                             4      5      6      7      8      9     10     11 

sections                    1      2      3      4      5     6      7 

intervening numbers    1      2      3      4     5       6 

 

 Always, between the two visits to a (k, 3k) triple 

crossing, there are 2k sections and so 2k −1 visits to 

other crossings. So the answer to the question is “an 

odd number of times”. 

 

Second Answer: An even number of times. 

 

 Before you start pointing out that this contradicts 

what we concluded earlier, consider the supporting 

argument. 

 

 If you start at any crossing in a scribble and 

move around till you revisit that crossing you’ll have 

traced out a smaller scribble. Those parts you haven’t 

traced will also be a smaller scribble. What you’ll have 
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done is to decompose the original scribble into two 

simpler ones, linked at the crossing you started with. 

 

1,10

2,5

3,16
4,17

6,11

7,14
8,13

9,18

12,15

 
 You can think of one of these smaller scribbles 

as being the boundary of a region and the other scribble 

as being a closed path (‘closed’ here just means that it 

ends where it starts) which cuts across the first scribble 

in a number of places. Now because of the principle 

that “what goes in must come out” (this must hold 

because the scribbles don’t have any free ends), the two 

smaller scribbles must cut each other in an even number 

of places. 

 

 So when you go from a (k, 3k) triple crossing at 

visit k, until you revisit it at visit 3k, you’ll have passed 

through an even number of crossings. 

 

 But wait a minute, we've overlooked places 

where the scribble that’s traced out on this journey may 

cross itself. As well as the even number of places where 

the two scribbles cross we must add the places where 
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the first scribble crosses itself. And couldn’t that be an 

odd number? 

 

 Yes, of course. In the above example the solid 

line and the dotted line are the two smaller scribbles 

that together make up the whole scribble. Now you can 

see that the solid line cuts itself just once. So doesn’t 

that destroy the evenness of the number of intervening 

crossings? 

 

 Not at all. Remember, we’re not counting 

crossings but visits. So, when the scribble we’re 

following crosses itself, that counts as two visits. 

Including these self-crossings merely adds an even 

number to an already even number. 

 

 So for these reasons the number of visits to 

crossings between the first and second visits to our 

mythical triple crossing is even. 

 

 The fact that we previously convinced ourselves 

that this number is odd, and the fact that no number can 

be simultaneously odd and even, completes the 

argument. If a triple crossing were to exist then we’d 

have a contradiction, and once even a single 

contradiction is allowed to creep in, others follow:   odd 

= even , true = false, black = white and the whole 

edifice of knowledge crumbles to dust. 

  



 61 

 You may be getting the impression that the 

difference between odd and even is at the heart of every 

proof of impossibility. This is certainly true in many 

cases. However we’ll now see a few examples where 

the impossibility uses other methods. 

 

§2.8. The Utilities Puzzle 
 Imagine that you have three houses, each of 

which has to be connected to the three utilities of gas, 

water and electricity. Now the catch is this. Pipes and 

wires are not allowed to cross over one another. Why 

this should be is never properly explained in the puzzle. 

Perhaps the world is a sort of two-dimensional 

‘Flatland’. 

 

 

 

 

 

 

 

 It’s very easy to get a solution that almost works, 

where only one pipe or wire remains to be installed. But 

no amount of ingenuity can come up with one that 

works completely. Try as you might, no matter how 

ingenious and how contorted you make the routes, 

nothing seems to work. 

 

 Now you might be a pragmatist and conclude, 

after a bit of fruitless experimentation, that it’s 
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impossible. Or you might accept the authority of the 

experts and say that if nobody has managed to find a 

solution after all these years then it must indeed be 

impossible. 

 

 But if you’re happy to leave it there then you 

don’t possess mathematical curiosity. “Perhaps one 

day, a solution might be found.” Unless the 

impossibility has been ruled out by a water-tight logical 

argument the problem would continue to tantalise 

mathematicians. But just such an argument has been 

found and a proof of impossibility can produce as much 

excitement in a mathematician as a solution would 

have. 

 The key to proving the impossibility of solving 

the Utilities Puzzle lies in counting. We suppose that a 

solution exists and count the number of points (well 

that’s easy – there are 6 points, 3 houses plus 3 

utilities), the number of connecting lines (that’s easy 

too – there’s a pipe or wire from each of the 3 houses 

to each of the 3 utilities, that’s 9 altogether) and the 

number of regions enclosed by the lines. 

 

 For example if we take the above attempt at a 

solution and remove the incomplete pipe from the 

bottom house to the waterworks the number of regions, 

including the outside, is four. 

  



 63 

 

 

 

 

 

 

 How many regions will there be in a solution to 

the puzzle? We might say that there would be 5, one 

more than in the above because a ninth line would split 

one region into two. But remember that there’s no way 

of successfully putting in a ninth line to the above 

picture. If there is a solution we’d have to start from 

scratch. 

 

 So how on earth can we count the number of 

regions until we’ve drawn the picture? And if the 

problem is impossible we can never draw the picture. 

Ah, but there’s another, sneakier, way to do this. 

 

 You see, there’s a connection between these 

three numbers which holds for any map on a plane 

surface.  It is called Euler's Formula: 

V + F − E = 2 

Here V is the number of ‘vertices’ (that just means 

points), F is the number of ‘faces’ (that just means 

regions) and E is the number of ‘edges’ (or connecting 

lines). 

 

 Usually this formula is quoted for solid figures, 

like cubes and pyramids, which are bound by a number 

of flat faces, and where each face is bounded by a 
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number of straight edges. The technical term for these 

solids is ‘polyhedra’. They’re the three-dimensional 

analogues of polygons. 

 

 A cube has 8 vertices, 6 faces and 12 edges and 

8 + 6 − 12 = 2, so it works for a cube. In fact it works 

for any polyhedron. But what’s this got to do with our 

two-dimensional problem? It’s amazing the way a 

mathematician is able to change the subject. Talk to 

him (or her) about one thing and the next thing you 

know he or she is talking about something completely 

different and apparently unrelated. 

 

 But the true mathematical approach is to draw 

together the original problem and the apparent ‘red 

herring’ and to show that they’re very much related 

after all. 

 

 Take a polyhedron, for example a cube, and 

remove one of the faces. Now stretch the rest out so 

that it lies flat. You might need to use your imagination 

for this because a cardboard cube is not sufficiently 

elastic. The edges of the faces may no longer be 

straight. That doesn’t matter. The important thing is 

which point is joined to what. Nothing in that 

department has changed; only the layout which now 

lies in a plane. 
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 What we’ve produced is a ‘map’ with vertices, 

edges and faces (except that the faces would now be 

better described as regions). The numbers of vertices, 

faces and edges has not changed throughout this 

imaginative flattening. What about the face we 

removed to open it all up? Well that’s just become the 

outside region of the map. 

 

 It’s because V + F − E = 2 works for maps that 

it also works for polyhedra. But why does it work for 

maps? Well can we put that one on hold for a while. 

The best way to convince you is by a method called 

‘Mathematical Induction’ and that’s something we’ll 

talk about later. Just be a good mathematical reader and 

accept it as fact. (Of course a really good mathematical 

reader will say “well, just for now, but eventually I 

want to know why”.) But to give you enough faith to 

keep you going, draw a few maps and check it out. A 

few confirming examples is no proof, but they’re 

comforting nevertheless! Well back to our supposed 

solution to the Utilities Puzzle. 
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 We know that V = 6 and E = 9. We counted 

them. We have to have that number of vertices and that 

number of edges in any solution to the problem. 

Conceivably the number of faces, or regions could 

vary. But no. Euler's formula says that 

 

F = E + 2 − V = 9 + 2 − 6 = 5. 

 

 So, indirectly, we can infer that any solution to 

the puzzle must have exactly 5 regions. Where does 

this get us? 

 

 The question to ask at this point is “what is the 

average number of edges per face?” Why this question? 

What led to asking that? That’s where mathematicians 

get really sneaky. Often it’s just a matter of asking the 

right question and it all falls out. So how does a 

mathematician develop the art of asking just the one 

question that will unravel a problem? 

 

 The answer is two-fold. Firstly, a 

mathematician, thinking about a certain problem, 

develops his or her intuition so that the ‘right’ question 

just pops out. It’s a common experience in the trade that 

after getting nowhere with a problem a mathematician 

puts it away and “sleeps on it”. Then suddenly the 

answer, or at least the right question which leads to the 

answer, comes as if from nowhere. He might be on a 

bus, she might be out walking. The problem is miles 

away. Then like a bolt from the blue, it comes. 
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 The other explanation for why mathematicians 

seem to have this uncanny ability to hit on exactly the 

right question first time, is that they generally don’t. 

You see, in practice a mathematician might ask dozens 

or hundreds of questions about the problem in hand. 

Scores of screwed up sheets of paper might litter the 

floor until finally “eureka” – the right one comes. 

 

 Now you don’t think a mathematician is going to 

unravel all those crumpled-up pieces of paper and write 

up the whole investigation, false starts and all – of 

course not. You’d never want to read them and nor 

would any other mathematician. Only the right 

question, the right way of looking at the problem, gets 

into print. It appears to the reader that Euclid, Euler or 

Einstein just sat down one day and wrote a theorem as 

effortlessly as, we’re told, Mozart wrote his music — 

flawless in first draft. All the pain and tears and sweat 

and sleepless nights and countless cups of coffee and 

conversations are hidden. All that appears is the 

finished product. 

 

 By the way, while we are talking about Einstein 

I should point out that, unlike what many people 

believe, he wasn’t a great mathematician. He was a 

great theoretical physicist – probably the greatest that 

ever lived. And he was he had a good knowledge of 

mathematics, otherwise he couldn’t have applied it so 

well. But frequently he had to ask his colleagues about 

some difficult mathematical technique. And he never 
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discovered any new mathematics. But a great 

theoretical physicist, yes. 

 

 Mathematicians are not the only ones who 

remove their scaffolding before displaying their 

finished edifice. But probably the process by which 

they achieve their results is less well understood than 

most. 

 

 What has all this to do with the problem in hand? 

Not a great deal. This was a real digression. If you 

remember, we had a map with 6 vertices, 9 edges and 

5 regions. Well, we supposed we had such a map, 

because a solution to the Utilities Puzzle requires such 

a map to exist. And we were about to ask the RIGHT 

question. And this is ... 

 

What is the average number of edges per face? 

 

Easy! With 9 edges and 5 faces or regions the average 

number of edges per face is 9/5 = 1.8. Whoops! That's 

a bit on the low side! Think again! 

 

 Silly us. We forgot that each edge (boundary) 

separates two regions. Imagine that each edge is neatly 

sliced lengthwise into two half-edges. Now each half-

edge is attached to only one region. Start again. 

 

We have 9 edges, that’s 18 half-edges, to be shared 

among 5 regions. That’s 18/5 = 3.6 edges per face on 



 69 

average. That’s better. But maybe still a wee bit too 

small. 

 Each face has to have at least four edges. Why 

not 2? Well, that would mean two edges connecting the 

same two vertices and the puzzle specifies only one. 

Why not 3? Well a closed path has to alternate between 

utility and house. Three edges just wouldn’t work. 

 

 So if 4 is the smallest number of edges 

surrounding any one face then the average must be at 

least 4? An average below 4 is just not possible. In fact 

it’s impossible. Yet that impossible state of affairs is 

forced upon us if we assume that a solution exists. 

Therefore no solution can exist. 

 

 You see the infinitely many possibilities can be 

captured by a little piece of elementary arithmetic that 

in the end depended on the undeniable fact that 3.6 is 

less than 4. And all because we asked the right 

question! 

 

 §2.9. Is it possible to get “GODEL” 

from “LODGE”? 
 It would be understandable if you felt that you’d 

have enough impossibilities for now. By all means skip 

to the next chapter, taking a detour via the radio play 

There Is No Time. But if you’re a glutton for algebraic 

punishment then read on. 
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 The word GODEL (the logician whose work 

shook the foundations of mathematics to the core in the 

1930’s was actually Gödel, but we’ll drop the umlaut 

over the “o”) and the word LODGE use the same 

letters, so a simple rearrangement will do the job of 

getting GODEL from LODGE. 

 

 But suppose that the five letters are written on 

five cards and arranged in a row to spell LODGE, and 

suppose that a rule is imposed on how the cards are to 

be rearranged. Suppose that we’re only allowed to 

move the middle card to either end, moving them up to 

close the gap. If that is all we’re allowed to do, can we 

still get GODEL from LODGE? 

 

 This is one of 

many puzzles that 

involve permutations, 

or rearrangements. 

The Rubik’s CubeTM is 

perhaps the most 

famous, and probably 

the most complicated. 

There is another 

puzzle which was in 

vogue many years ago, 

called the “Fifteen Puzzle”. It consisted of fifteen small 

square tiles that could slide around in a 4 by 4 square 

frame. 

 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15  
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 With a permutation puzzle there are a number of 

pieces that can be moved and one or more possible 

moves that are permitted. In most cases the restrictions 

as to what rearrangements are allowed are 

automatically imposed by the engineering of the 

puzzle. In our LODGE-TO-GODEL puzzle, however, 

we’ve artificially imposed a restriction. Well, this 

puzzle is a pretty easy one to solve: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L O D G E 

D L O G E 

O D L G E 
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 Not very interesting. (If you want a harder 

challenge, try converting LEDOG to GODEL by the 

same rules.) 

 

 But suppose we change the rules. Under these 

new rules there are three basic moves: 

 

move description effect on 

LODGE 

L take the left card and 

transfer it to the right 

ODGEL 

R take the right card and 

transfer it to the left 

ELODG 

V reverse the order of the 

cards 

EGDOL 

 

O D G E L 

G O D E L 
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 Using these new rules, can we get from OGLED 

to GODEL? With a bit of experimenting we see that we 

can: 

OGLED → ODELG (move L) → DELGO (move L) 

→ OGLED (move V). 

 

 Now, can we get from LODGE to GODEL? The 

answer is “NO”. It is IMPOSSIBLE. But how can we 

say this? There are infinitely many possible sequences 

of L, R and V. Have we tried them all? Of course not, 

yet we can prove that it is impossible! 

 

 To see this, first observe that we can do without 

R, because R is the same as doing L four times, which 

we write as L4. Anything that can be achieved using L, 

R and V can be achieved using just L and V alone. 

 

 Next, it is obvious that doing L five times brings 

us back to where we were. We write the operation of 

doing nothing by the symbol I and so we write L5 = I. 

Similarly V2 = I. Reversing the order twice in a row 

gets us back to where we started. 

 

 We can write a sequence of moves as a product 

of powers of L and V, but we only need powers of L up 

to 4, and we don’t need any powers of V, other than V1 

which, of course, is just V. 

 

 Suppose you came up with a recipe for 

transforming LODGE into DOLEG such as: 

L8V3L2VL4V5L7. 
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 You might be tempted to collect all the L’s 

together, and all the V’s and write this is L17V9 and then 

simplify this to just L2V using the fact that L5 = V2 = I. 

So the power of L can be reduced by removing blocks 

of 5, and the power of V can be reduced by removing 

pairs. 

 

 However you can’t bring the L’s together and the 

V’s, like you would in ordinary algebra. These moves 

don’t commute, that is, VL  LV. If you start with 

LODGE, the move VL would turn it into GDOLE, 

while LV makes it LEGDO. 

 

 We can use the fact that L5 = V2 = I to simplify 

our supposed solution to L3VL2VL4VL2. Could we 

simplify it further? 

 

 Notice that VL = L4V. Check it out. For 

example, VL turns LODGE into GDOLE. L4 turns 

LODGE into ELODG and V then changes this to 

GDOLE, which is the same as VL. This means that we 

can move a V across L’s but as VL = L4V so each L on 

the right of a V becomes L4. But, since L5 = I, L4 = L−1, 

so our rule for moving a V across an L is: 

 

VL = L−1V. 

 

 This is called the dihedral law and is used in 

certain cases where two operations don’t obey the 

commutative law. 
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 This can be generalised to VLn = L−nV by 

moving the L’s one at a time. But instead of 

remembering the formula just remember the mantra: 

  

TO MOVE A ‘V’ PAST A POWER OF ‘L’ 

SIMPLY INVERT THE POWER OF L. 

 

 So our supposed solution can be simplified as 

follows: 

 

L3VL2VL4VL2 → L3 L−2V VL4VL2 → LV2L4VL2 → 

L5VL2 → L5 L−2V → L3V. 

 

 In this way, any solution can be written as LmVn, 

and since we can take m = 0, 1, 2, 3 or 4 and n = 0 or 1, 

we only get 10 possibilities. So we only need to test 

those 10 possibilities. 

 

I L L2 L3 L4 

LODGE ODGEL DGELO GELOD ELODG 

 

V LV L2V L3V L4V 

EGDOL LEGDO OLEGD DOLEG GDOLE 

 

 Since GODEL is not one of these it cannot be 

achieved. 

 

 The area of mathematics that studies such non-

commutative systems is called Group Theory. Groups 

were invented by a French mathematician Évariste 
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Galois at the age of 19. He used them as a way of 

solving a problem about polynomial equations. 

 

 So, in the end, the proof of impossibility came 

down to checking  a finite number of possibilities. The 

breakthrough came when we realised that the infinitely 

many possibilities are equivalent to just 10. This is a 

common situation in mathematics. Something, with 

infinitely many possibilities, is proved to be impossible 

by reducing these infinitely many possibilities to a 

finite number which are then checked. 

 

 A classic example of this is the celebrated Four 

Colour Theorem. It began as a question in 1852 when 

Francis Guthrie, who was drawing and colouring a map 

of the counties of England, wondered whether four 

colours are enough. Guthrie had studied under the 

mathematician Augustus de Morgan at University 

College in London and his brother, Frederick was then 

studying mathematics under de Morgan. So Francis 

passed on the question to de Morgan through his 

brother. 

 

 De Morgan wrote: “A student of mine asked me 

to day to give him a reason for a fact which I did not 

know was a fact – and do not yet. He says that if a 

figure be any how divided and the compartments 

differently coloured so that figures with any portion of 

common boundary line are differently coloured – four 

colours may be wanted but not more – the following is 



 77 

his case in which four colours are wanted. Query: 

cannot a necessity for five or more be invented. 

 

 Over the next few decades it became the Four 

Colour Conjecture. Many ‘proofs’ were published and 

several of them stood for a number of years before they 

were shown to be wrong. It took over 100 years before, 

in 1976, it was finally proved by Appel and Haken. 

 

 But the proof caused a lot of controversy in that 

it was the first theorem in history that was proved by a 

computer program. Of course no computer program 

could consider the infinitely many possible maps. What 

Appel and Haken did was to use standard mathematical 

reasoning to reduce 

this to 1,834 maps. If 

all these could be 4-

coloured then every 

map could be 4-

coloured. Here is the 

principal of reducing a 

proof of impossibility 

to checking a finite number of cases. However this 

time, the number of cases was rather large and required 

a computer to check them all. A computer program, 

laboriously, considered each of these maps and, indeed, 

showed that every one of them was 4-colourable. 

 

 Appel and Haken were at the University of 

Illinois when they published their proof and the local 

postal authorities were so proud of this discovery that 
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for many years they franked letters that passed through 

their hands with the words FOUR COLORS SUFFICE. 

Indeed they were still using this slogan in 1994 as this 

picture shows. 

 

 Motivational speakers often use the slogan: 

 

NOTHING IS IMPOSSIBLE! 

 

I hope that, as a result of reading this chapter, you will 

realise that it is not really true. You slogan should read: 

 

SOME THINGS ARE IMPOSSIBLE BUT 

THEY ARE LESS COMMON THAN YOU 

MIGHT THINK! 
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INTERLUDE: RADIO 

SCRIPT 
 

“It is Impossible – There is no Time” 
 

Narrator: Mathematics and sport have this in 

common. They’re both a young man’s occupation. An 

historian reaches his peak in his sixties, an engineer at 

forty. A mathematician is said to be already on the 

decline at the age of thirty. Évariste Galois made his 

important discoveries in the theory of algebraic 

equations at the age of nineteen. At twenty he was 

dead. 

 

Female Voice: Poor boy. What 

did he die of? 

 

Narrator: He was killed in a 

duel. 

 

Female Voice: Sounds like a 

character out of one of the 

Alexander Dumas novels. 

 

Narrator: Almost. Alexander Dumas knew him and 

referred to him in one of his memoirs. 
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Female Voice: So Galois had to defend his 

mathematics with his rapier? 

 

Narrator: Well no. For a start it was a duel fought with 

pistols, not swords. And secondly it was over a woman. 

 

Female Voice: Just like a Frenchman! 

 

Narrator: Perhaps. But in fairness I should point out 

that it was more than likely that she had been planted 

by his political adversaries to provide the excuse for a 

duel. It was really all to do with politics. You see, 

Galois had been very active in Republican politics and 

several times landed himself in trouble with the police. 

In fact much of his mathematics was done during spells 

in gaol. (With feeling) He wasn’t afraid of death and 

he’d gladly have died for the Republican cause. But 

such glory was not to be. 

 

Galois: I beg patriots and my friends to forgive me that 

in dying I do not die for my country. I die the victim of 

an infamous coquette. My life is quenched in a 

miserable piece of slander. 

 Oh, why do I have to die for such an unimportant 

cause; to die for something so contemptible? Farewell! 

It was my wish to give my life for the public good. 

Forgiveness to those who kill me.  They are of good 

faith. 

 

Narrator: These were the words he wrote to his friends 

on the night before the duel. He seemed quite sure that 
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this night would be his last.  He sat up all night writing 

some personal letters and then going over his 

mathematical papers. Scrawled across one of them he 

wrote the pathetic words .... 

 

Galois: (in despair) I have no time. 

 

Narrator: So many of his ideas had yet to be written 

down and there was just not enough time. He wrote ... 

 

Galois: I hope some people will find it to their 

advantage to decipher all this mess. 

 

Narrator: The duel took place on Wednesday 30th 

May 1832 just outside Paris. Galois was wounded and 

left lying by the roadside. Even his seconds deserted 

him. He was eventually found by a Good Samaritan 

and taken to hospital. It was in vain, for the next day he 

died. 

 His mathematical discoveries however were to 

lie on the roadside for a further eleven years. Not by the 

side of the road out of Paris but by the side of the 

highway of mathematical research. The Good 

Samaritan who rescued them was Joseph Liouville who 

in 1843 drew Galois' work to the attention of the French 

Academy. 

 

Liouville: I hope to interest the Academy in 

announcing that among the papers of Évariste Galois I 

have found a solution, as precise as it is profound, of 
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this beautiful problem: whether or not a given 

polynomial equation is soluble by radicals. 

 

*************************** 

 

Narrator: What was this theory that was “beautiful” 

and “as precise as it is profound”? It was in fact the 

culmination of over two thousand years of 

mathematical enquiry into the theory of polynomial 

equations. 

 Most people have heard of quadratic equations. 

Most people vaguely remember what they are. Roughly 

speaking they're equations involving x2. Maybe you 

also remember that there’s such a thing as a quadratic 

equation formula. Now I’m not expecting you to 

remember it — simply to know that it exists. It’s a 

formula into which you put the numbers from the 

equation, do some arithmetic, and out pop the answers. 

 The arithmetic isn’t hard, but at one stage it 

involves finding a square root. “Radical” means the 

same as “root”, and solving a polynomial equation by 

radicals simply means finding a formula for such an 

equation into which you plug the numbers from the 

equation and do some arithmetic, including finding 

square roots, cube roots or whatever roots may be 

necessary. 

 Now the Babylonians could do it for quadratic 

equations. In the sixteenth century the Italians worked 

out how to solve the cubic (involving powers of x up to 

x3) and the quartic (powers up to x4). These formulae 
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are much more complicated than the one for the 

quadratic but they have a similar structure. 

 The next step should have been the quintic 

(powers up to x5). But no such formula was 

forthcoming for the next three centuries. Finally in 

1824 a 22 year-old Norwegian mathematician, Abel, 

called off the search — he proved that no such formula 

can possibly exist. 

 Abel’s methods, however, were not very 

enlightening. They worked but they didn’t make one 

feel that one knew why they worked. The methods of 

Galois a few years later were much more general and 

much more enlightening. Moreover he took the 

problem a stage further. 

 So, Abel has shown that there is no general 

formula for all polynomials involving x5. But there are 

formulae that work for some of them. Which ones?  

Galois worked out exactly which ones are soluble by 

radicals and which ones are not. 

 

 Now make sure you understand what is being 

claimed. Not that some polynomial equations have no 

solutions. Solutions can be proved to exist, even if we 

can’t find them. Not even that we can’t find the 

solutions for practical purposes. There are methods, 

implemented by computers, which can find any 

solution to any degree of accuracy. It’s a question of 

which polynomials can be solved exactly, by means of 

a formula involving radicals or roots. 
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 Galois showed that corresponding to every 

polynomial equation is something called a group. And 

one can tell from the structure of this group whether or 

not the polynomial is soluble by radicals. 

 Now I think that rather than give you a formal, 

precise and technical definition of a group it would be 

better if I gave a broad and vague description, and then 

a specific example. 

 A group is a certain type of mathematical system 

where the things in it can be combined like 

multiplication. But the things needn’t be numbers and 

the method of combination needn’t be ordinary 

multiplication. 

 Pretty vague isn’t it? Well I didn't want to get too 

technical. Now here’s an example. It’s called the 

“dihedral group of order 8”. It crops up in many 

different guises. I could describe it to you the way 

Galois would have, in terms of substitutions of 

solutions of a certain polynomial equation, or, as it is 

presented in a modern course on Galois Theory, as 

automorphism groups of field extensions. But I won’t. 

That’s too hard. 

 Instead, let me dress it up as a children's party 

game.  I’ve called it “duels” in memory of Galois. It's 

rather a fun sort of game that can be counted on to keep 

a bunch of bored children 

amused - for a few 

minutes anyway. Who 

said mathematics can’t 

be useful! 
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 “Duels” is a game basically like “O'Grady Says” 

where players are “out” if they make a mistake in 

obeying the leader's instructions. 

 The instructions are RIGHT, LEFT and LOAD.  

The instructions RIGHT and LEFT require you to turn 

through 90 degrees, left or right and to LOAD, you 

hold your hand up with two fingers outstretched as if 

holding a pistol. But here’s the catch. 

 

Whenever the gun is loaded you must do the opposite 

to what you are told. 

 

 If your gun is loaded and you’re told to load, you 

must unload, that is, fire. And if told to turn right with 

a loaded gun you must turn left and vice versa. But only 

when the gun is loaded do you do the opposite. At other 

times you must obey the instructions exactly. 

 It’s quite hilarious to watch when a number of 

people are playing and you really need to keep your 

wits about you to play it well. 

 Would you like to try it out right now? If you 

don’t feel like standing up and obeying the instructions 

overtly you can remember which wall you’re supposed 

to be facing, and discreetly raise your right hand 

whenever the gun is loaded. 

 Choose a particular starting direction as your 

“home” direction.  Gun unloaded. Ready? 

RIGHT 

LOAD 

RIGHT 
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Did you remember to obey this second right turn by 

turning left? 

 

LOAD 

 

 You should once again be in your home position 

with your hands by your side having just fired the 

pistol. 

 Now there are eight positions you can be in 

during this game — four directions, each with a loaded 

or unloaded pistol. And there are basically eight 

different sets of instructions for getting you there. 

 We say that two sets of instructions are equal if 

they result in the final positions. So for example, 

LOAD LOAD LOAD would be the same as LOAD. 

(Never mind that in the first case you've fired a shot.) 

And three right turns would equal one left turn. 

 So you see, we’ve a mathematical system here 

consisting of eight things. The things aren’t numbers 

— they’re sets of instructions. And we can combine 

them like multiplication by doing one set of 

instructions after the other. 

 

 We get equations like: 

 

RIGHT  times  RIGHT  times  RIGHT equals LEFT 

and 

RIGHT  times  LEFT equals LEFT  times  RIGHT 
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 Now here's the interesting thing about this group 

which makes it quite different from groups of numbers. 

Are you in your starting position? Gun unloaded? 

 

RIGHT 

LOAD 

 

 I want you to remember which way you’re 

facing. You just performed  RIGHT  times  LOAD. 

Now go back to your home position, gun unloaded, and 

this time do 

 

LOAD 

RIGHT 

 

that is, do the same two operations in reverse order. 

Notice that you’ve ended up in the opposite direction 

to before. 

 

RIGHT  times  LOAD is not equal to LOAD  times  

RIGHT 

 

We have what is called a non-commutative group. 

 The difference between commutative and non-

commutative groups is very important in Galois 

Theory. Commutative groups are those where  x  times  

y  is always equal to  y  times  x. The dihedral group of 

order 8 is non-commutative. 

 

 Suppose you think of solution by radicals as a 

sort of “abstract stomach” and commutative groups as 
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particles which can be absorbed by the stomach lining. 

Any group which can be broken up into commutative 

bits would therefore be digestible. The dihedral group, 

for example, can be broken into two commutative bits 

in a way that I won’t attempt to describe. 

 Galois showed that these digestible groups (or 

“soluble groups” as he called them) – these groups 

which can be broken down into commutative bits – are 

precisely the groups that correspond to polynomial 

equations that are soluble by radicals. 

 Some polynomial equations (3x5 − 5x3 + 1 = 0 

for example) correspond to groups which are not 

soluble, or to use our analogy, they are indigestible. 

They involve a non-commutative chunk which cannot 

be broken down further. These polynomial equations 

are therefore not soluble by radicals. Not even by 

Galois, who was something of a radical in the political 

sense. 

 

 It was quite an achievement for a young man 

who only scribbled his mathematics in his spare time 

and threw the major part of his energies in fighting for 

the freedom of his country. On the eve of his duel he 

wrote to two of his friends ... 

 

(The sounds of “Le Marseillaise” are heard in the 

background.) 

 

Galois: I have been provoked by two patriots and it is 

impossible for me to refuse. 
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 Your task is simple. I want to let it be known that 

I am fighting against my will after having exhausted all 

means of reconciliation. Please remember me, since 

fate did not allow me a life that would make my name 

worthy to be remembered by my country. 

 I die your friend, 

                  É. Galois 

 

(The music of “Le Marseillaise” swells and reaches its 

dramatic conclusion.) 
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3. THE INFINITE 
 

§3.1. Is Infinite Knowledge Possible? 
 We’re told that God is omniscient. He knows all. 

We don’t. We have finite brains so we can’t know 

infinitely many different things. Or can we? 

 

 The finite brain has a large, but finite, memory 

capacity. So common sense tells us that there’s only a 

finite amount of information it can contain. Yet in a 

certain sense we can know infinitely many facts. (Of 

course this falls far short of omniscience!) 

 

 Suppose I am in love with a woman, living in 

another city. I write and tell her that I love her. At the 

time of writing she doesn’t know that. But the next day, 

when she receives the love letter, she knows. She 

knows that I love her but I don’t know that she knows. 

Not until she writes back. When I get her reply, I know 

that she knows I love her, but she doesn’t yet know this. 

She must wait for my reply to find out. 

 

 There are infinitely many facts of the type: “ 

know that she knows that I know that she knows ....” 

After a few letters it may not be of very great interest 

to me to distinguish between these successive layers. 

But logically they’re separate facts because they 

become true on successive days. 
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 Now although there are infinitely many distinct 

facts here, at any time only a finite number will be 

known to me. Every second day when I open the next 

letter from my beloved I have a new fact to add to my 

collection, but only ever a finite number at any stage. 

 

 But suppose that instead I was in her presence, 

looking lovingly into her eyes. At the moment I issue 

the words, “I love you”, all of the “I know that she 

knows .” facts are instantly known to me. It’s not that 

the information travels back and forth rapidly at the 

speed of light. I don’t need to wait for her eyes to light 

up. I can infer that because she is actually in my 

presence, he has heard what I said. And equally well 

she can deduce that because I am standing there, I will 

know that she knows. Infinitely many distinct facts are 

knowable in an instant! 

 

 I know that 2 is bigger than 1. That’s one fact. 

And 3 is bigger than 2 – a second fact. And 4 is bigger 

than 3, and 5 exceeds 4, and so on. There are infinitely 

many facts like these, all of which I know. And the 

reason why I know them is that I have a rule: “one more 

than any number exceeds that number”, or “n + 1 > n”. 

 

 The only way a finite mind can know an infinite 

number of facts is to know a rule that will generate 

them. We will only ever use that rule a finite number 

of times, but the set of potential instances is infinite. In 

this sense, a finite mind can have infinite capability. 
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§3.2. What Does ‘Infinite’ Mean? 
 It’s an amazing thing that the finite human mind 

ever conceived of the idea of the infinite. As amazing 

as if a race of natives living on a small island which had 

always been completely cut off from the rest of the 

world, had a concept of other lands across the sea. 

 

 What’s even more amazing is that the finite 

human mind has to some extent been able to explore 

the infinite and has discovered detailed facts about 

infinity. As amazing as if that isolated island race had 

detailed knowledge of the cathedrals of Europe. 

 

 Yet that is the case. Mortal man has notions of 

immortality, earth-bound man conceived of other 

worlds long before space travel began, and finite man 

has had a word for “infinity”. But what exactly is 

infinity? 

 

 I once asked a group of students what they 

thought ‘infinity’ meant. Some said, “it’s the biggest 

number there is”. Others said, “it’s something you can 

approach but never reach.” Yet others said, “the 

ultimate”. 

 

 All of these answers have captured a little of the 

mystery of the infinite but they’re notions far too vague 

on which to build any knowledge. 
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 “Infinity is the 

biggest number there 

is.” Well of course 

there is no biggest 

number in the sense 

of a number in the 

sequence 1, 2, 3, ... So 

we’ll have to invent a 

new number that goes 

after all the others: 

1, 2, 3, ..................,  

 

 How does that sound? Any set or collection that 

isn’t finite is infinite, and the number of elements in an 

infinite set is denoted by . 

 

 That’s a perfectly good state of affairs if we don't 

want to be discriminating about the infinite. We’re 

saying that all infinite sets are to be regarded as having 

equivalent size – there’s only one infinity. 

 

 There’s nothing wrong with this – except that it’s 

a bit like the tribe of Tasmanian aborigines who are 

supposed to have had no words for numbers after three. 

Counting in their language went “one”, “two”, “three”, 

“many”. Any more than three is a crowd. That certainly 

keeps arithmetic very simple! “Two plus two is many”. 

 

 Anthropologists have dismissed this story as 

false and indeed we’re discovering that Aboriginal 

culture was rather more sophisticated than we thought. 
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Elsewhere I describe how the kinship rules of one tribe 

anticipated the discovery of Group Theory. 

  

 Georg Cantor discovered, in the latter part of the 

nineteenth century, that it’s possible to distinguish 

between different sizes of infinity in a very natural way 

and this has proved a useful tool in both mathematics 

and computer science. 

 

 Not just one infinity, but many. Now if you’re 

hearing about this for the first time you’re perhaps a 

little sceptical. It’s quite a radical idea, even though it’s 

been around for over a hundred years. At least keep an 

open mind on the question. Simply to automatically 

lump all infinite sets under the one heading is to make 

up your mind in advance. 

 

 Well if we’re to proceed and to ask the question 

whether or not all infinite sets have the same size, we 

need to develop some concept of size or “same size”. 

In chapter 1 we saw that we could define two sets of 

things as having the same size if they can be paired off 

exactly. 

 

Two sets have the same size if we can pair the 

elements of one exactly 

with the elements of the other. 
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§3.3. Counting Couples 
 One of the greatest hindrances to social harmony 

in a society is held to be an imbalance between the 

sexes. Nowhere is this more evident than at a formal 

dance. 

 

 Now I know that the problem of insufficient men 

at a dance has often been overcome by women dancing 

with women, and in modern times the necessity or 

desirability of dancing with a member of the opposite 

sex, or indeed having a partner at all, has been called 

into question. But for the old-fashioned formal balls, 

for which the Strauss brothers wrote their waltzes and 

polkas, it was taken as an axiom that dancers were 

couples and each couple came from opposite sides of 

the biological tracks. 

 

 Imagine then that you’re in Vienna at a ball and 

that you cast your eyes around the many dancing 

couples. You notice that nobody is sitting out − all are 

dancing. You’d be justified in concluding that the 

number of men was the same as the number of women, 

that is, if you exclude yourself. If, on the other hand, 

there were a few female wallflowers, and no men, 

you’d conclude that there were more women than men. 
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 These conclusions would have been reached 

without counting the 

men and counting 

the women and then 

doing the necessary 

arithmetic 

comparison. 

 

 Are there 

more left legs or 

right legs on the dance floor? A brief inspection reveals 

no one-legged dancers hobbling on crutches, so the 

number of left legs is the same as the number of right 

legs. Again, no counting was involved. Just the 

realisation that left legs are paired with right legs, just 

as male dancers are linked to their female partners. 

 

§3.4. The Biggest Number There Is 
 We tend to think of counting as the most basic of 

all mathematical activities. Yet more primitive still is 

the notion of one-to-one correspondences, or pairings. 

 

 When, as kindergarten children, we counted out 

loud as we pointed to each object in turn, we were 

setting up a one-to-one correspondence between the 

things we were counting and a certain set of counting 

numbers. We pointed to a yellow duckling and said 

“one”. The next one was called “two”. We may have 

thought, at one stage in our conceptual development, 

that we were giving names to the fluffy creatures. 
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 Gradually it would have dawned on us that these 

‘names’ have nothing to do with what we were 

counting as we abstracted the concept of number from 

the things themselves. Soon we felt very proud that we 

could count to a hundred and beyond. As we learnt to 

write down longer and longer numbers we began to 

realise that there was no end in sight. We might not 

have known what words to use after ‘trillions’ and 

‘quadrillions of quadrillions’ but we knew that we 

could keep adding zeros to make larger and larger 

numbers. 

 

 Big numbers fascinate little children and a 

favourite pastime is to think of a description of a bigger 

number than other children. 

 

 “I bet you a trillion, trillion, quadrillion dollars 

that ....” 

  “I bet you all that and a trillion dollars more!” 

 “Alright, I bet you all the money in the 

universe.” 

 “I bet you a hundred times all the money in the 

universe.” 

 

 It was fortunate that none of these childish bets 

ever had to be paid. The next stage was the concept of 

‘infinity’. 

 “I bet you infinity dollars.” This was supposed 

to be a winning move because infinity is the biggest 

number there is. 

 “I bet you infinity times infinity dollars!” 
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§3.5. Dancing To The Music of Schröder 

and Bernstein 
 The infinite world is in many ways an extension 

of the familiar finite world. But in other ways it is quite 

different. The concept of pairing as the basis for same-

number-as works just as well for the infinite as it does 

for the finite. Where the difference comes is that a finite 

set gets smaller if you take one thing out. An infinite 

set does not. 

 

 This may seem paradoxical but that’s because 

we’re to some extent imprisoned by our experience of 

the finite world. Remember we’ve agreed to say that 

two sets have the same size if they can be paired off 

exactly with nothing left over. 

 

 Dancers in competitions often have numbers 

pinned to their backs. Imagine a competition with 

infinitely many men and infinitely many women. The 

dance floor may get a little crowded but with a bit of 

effort we can read the numbers pinned to them: 1, 2, 3, 

...  They go on forever. 

 

 Number ‘1’ gentleman dances with number ‘1’ 

lady, ‘2’ dances with ‘2’ and so on. Everyone’s happy 

because the number of men is exactly equal to the 

number of women. But lady number ‘1’ feels poorly 

and goes home so number ‘1’ man is without a partner. 

The numbers of men and women are no longer the 

same. Right? 
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 Wrong? All it needs is a little reorganisation. 

Number ‘1’ man can now dance with number ‘2’ lady. 

Number ‘2’ man, having lost his partner taps number 

‘3’ man on the shoulder and takes over his partner. The 

dance becomes an ‘excuse me’ dance as each man 

changes to the next numbered lady. 

 

 In a finite world, the last man misses out. But in 

an infinite world, there is no last man! Nobody misses 

out. Soon everyone has his or her new partner and the 

dancing goes on.  Everyone is happy and so we’re 

forced to conclude that the number of men and women 

has remained the same. 

 

 So the fact that there are some men, and no 

ladies, sitting down not dancing doesn’t mean that there 

are more men than woman. Not at an infinite dance 

anyway. And if at another dance there are only lady 

wallflowers it needn’t be the case that there are more 

ladies than men. The numbers may in fact be the same 

in each case and it may just need a bit of reorganisation 

of partners to get everyone on the dance floor. 

 

 Of course with finite sets of dancers this can’t 

happen. Only women left on the side? There must be 

fewer men. But with infinitely many it’s possible for 

this apparent disparity to occur with equal numbers. 

 

 If lady number ‘1’ had returned after the above 

excuse-me dance had reorganised the couples, she’d be 

without a partner, notwithstanding the fact that the 
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numbers of men and women would still be the same. 

All very strange, but you can’t dabble with the infinite 

without getting a few shocks. 

 

 Schröder and Bernstein may sound like a pair of 

musicians but in fact they were a couple of 

mathematicians who discovered, and proved, what is 

known as the Schröder-Bernstein Theorem. If they had 

been musicians in an infinite ballroom they might have 

had a conversation like this: 

 

     “I say, Schröder, did you notice that in the last dance 
there were only ladies left over.” 
     “Of course my dear Bernstein. Such poor 
organisation. In the dance before that there 
                were only men sitting out.” 
     “That surely means that there are equal numbers of 
ladies and gentlemen.” 
     “Probably, but can you prove it?” 
     “I'll think about during the next dance.” 
 

 Schröder and Bernstein did in fact prove this 

fact, though not while playing at an infinite ball. In less 

colourful terms the Schröder-Bernstein Theorem goes 

something like this (to the tune of “The Number 

Rhumba”) 

 

 If all the elements of J can be paired 
 with some of the elements of K, 
 and all the elements of K can be paired 
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 with some of the elements of J, 
 then it follows as surely as dead cats have flies 
 that J and K must have the same size. 
 

 Would you like to see a proof of the Schröder-

Bernstein Theorem? No, then you’d best make a detour 

and go straight to the next chapter, but make sure you 

go via the story Pam and the Prime Minister. 

 

 So, you’re still reading? Well, don’t say I didn’t 

warn you. Here’s a story that contains the basic idea of 

the proof of the Schröder-Bernstein Theorem. 

 

We are going to look at imaginary family trees. 

In this story we have the ability to know the future, so 

that we can project family trees into the future. Suppose 

that all men and women who have ever lived, or will 

live in the future, have, or will have, exactly one son 

and one daughter. 

 

Suppose too, that the daughter of every male 

born in Australia was, or will be, herself born in 

Australia and the son of every female born in Australia 

was, or will be, also born in Australia. 

 

This doesn’t seem to be a very good model for 

the human race but, as I said, this is just a story. We 

have two sets that we’ll call M and F. The set M is the 

set of all males who were, or will be, born in Australia 

and F is the set of all females who were born, or will be 

born in Australia. 
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Now every male has, or will have, exactly one 

daughter, also born in Australia and so the males born 

in Australia will be paired exactly with their fathers, 

and so there will be the same number of each. 

 

Let FAF be the set of all females with an 

Australian born father and let MAM be the set of all 

males with an Australian born mother. These will be 

paired off exactly with their mother and so there will 

be the same number of each. So we have 6 sets of 

people: 

• Males born in Australia 

• Females born in Australia 

• Males born in Australia with Australian 

mothers 

• Males born in Australia with non-Australian 

mothers 

• Females born in Australia with Australian 

fathers 

• Females born in Australia with non-Australian 

fathersb 
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The males born in Australia will pair off exactly 

with their mothers. The females born in Australia will 

pair off exactly with their fathers. 

 

 We want to show that there are as many males 

born in Australia as there are females born in Australia 

(under these rather unrealistic assumptions). 

 

Now many males born in Australia 

had/have/will have Australian-born mothers. Many of 

these mothers will have Australian-born fathers, but 

some will have fathers born overseas. If we trace back, 

alternately through the mother and the father, we may 

daughter son 

MALES born 

in Australia 

same 

No. 

with 

Aussie- 

Born 

dads 

FEMALES born 

in Australia 

MALES born 
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same 

No. 

with non- 
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with 
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Born 

mums 

with non-
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born 
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with 
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born 

mums 

with non-

Aussie- 

born 

mums 
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eventually strike someone who was born overseas. On 

the other hand, in this tale of infinitely many 

generations, both backward and forward, this 

alternating chain of ancestors may go on forever. 

 

If, for a male, this alternating chain (mother, 

maternal grandfather, mother of maternal grandfather 

etc) reaches someone born overseas we call his last 

Australian born ancestor in this chain his Ultimate 

Australian Ancestor or just UAA. 

 

If, for a female, this alternating chain will go 

father, paternal grandmother, father of paternal 

grandmother etc. If it reaches someone born overseas 

we call her last Australian born ancestor in this chain 

her Ultimate Australian Ancestor, or UAA. 

 

If such an alternating chain never ends, and 

there’s no UAA for a person, we’ll call that person 

aboriginal. Historically, indigenous Australians are 

descended from people who came from Indonesia over 

forty-thousand years ago and so they would have 

UAA’s just like the Europeans and Asians in Australia 

whose UAA was much more recent. But here I’m 

reserving the term ‘Aboriginal’ for those mythical 

people who can trace their ancestry through infinitely 

many generations, all born in Australia. (I hope I don’t 

offend any indigenous people by this use of the word, 

but I believe that they prefer the word ‘indigenous’ to 

‘Aboriginal’ anyway.) 
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KEY:                = male               = female 

 

            points to father               points to mother 

 

      = born overseas           = Ultimate Australian 

                                                       Ancestors 

 

The last two rows depict Aboriginals i.e. with no 

Ultimate Australian Ancestor. 

 

Take young David. He was born in Australia. 

His mother, Louise, was also born in Australia. 

Louise’s father, Christopher was born in Australia, and 

Christopher’s mother Sue was also born in Australia. 

But suppose that her father, George, was born in 

England. Then Sue will be the Ultimate Australian 

Ancestor (UAA) of David. She will also be the UAA 
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of Christopher, and Sue herself. Sue will also be the 

UAA of David’s daughter and his daughter’s son. 

 

 Now consider Alice. She was 

born in Hobart. Her father, Bruce, 

was born in Adelaide. Bruce’s 

mother Connie was born in Sydney 

and Connie’s father was Donald 

and he was born in Brisbane. So all 

of these ancestors were born in 

Australia. Finally, Donald’s mother 

was Eleanor and she was born in London. So Donald is 

the UAA of Alice. He is also the UAA of Bruce, 

Connie and Donald himself. Donald will also be the 

UAA of Alice’s son and her son’s daughter. 

 

 Little Bindi was born in Alice 

Springs, and her father, Jimba was 

born in Central Australia. Tracing 

back Jimba’s ancestry in this 

alternating fashion (mother, father, 

mother …) we find that they were 

all born in Australia. In that case we 

can call Bindi an Aboriginal in the 

rather special meaning of the word that I am using in 

this story. Jimba will also be Aboriginal and Bindi’s 

son and his daughter will also be Aboriginal. Bindi’s 

daughter may be aboriginal, but that depends on who 

Bindi marries because the alternating lineage that 

matters in this story will pass back through her 

husband. 
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 Now we divide the males born in Australia, and 

the females born in Australia, each into three subsets: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The males with a male UAA are paired exactly 

with females with a male UAA. 

 

The males with a female UAA are paired exactly 

with females with a female UAA. 

 

The male Aboriginals (with no UAA) are paired 

exactly with female Aboriginals. 

males with 

male UAA 

females 

with 

male 

UAA 

males with 

female 

UAA 

females 

with 

female 

UAA 

male 

Aborig-

inals 

female 

Aborig- 

inals 

daughter → 

 father 

 son 

mother → 

 son 

mother → 

Males born in 

Australia 

Females born in 

Australia 
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So each of the three subsets of males born in Australia 

has the same size as the corresponding subset of 

females born in Australia. Hence the set of males born 

in Australia has the same size as the set of females born 

in Australia. This example reflects the general proof. 

 

§3.6. The Infinite Manifesto 
 A political manifesto is a sequence of statements 

that are believed to be true about the way society 

should be run. Of course there will only be finitely 

many statements in such a manifesto. But consider the 

following infinite manifesto: 

 

INFINITE MANIFESTO 

[1] At least one of the following statements is FALSE 

[2] At least one of the following statements is FALSE 

[3] At least one of the following statements is FALSE 

[4] At least one of the following statements is FALSE 

[5] At least one of the following statements is FALSE 

................................................................ 

 

This appears to be a single statement repeated 

infinitely many times, but each one refers to a different 

collection of statements and so they’re subtly different. 

Notice that no statement refers to itself, either directly, 

or indirectly. There is no circular self-referentiality. 

 

 Yet there is a paradox hidden in this seemingly 

innocuous manifesto. Suppose that one of the 

statements is TRUE. Let’s suppose statement [n] is 
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TRUE. Then, by what it says, there is a FALSE 

statement below it. Let’s suppose this is statement [m], 

where m > n. 

 

 So statement [m] is FALSE, that is, it is FALSE 

that there is a FALSE statement below it. This must 

mean that all the statement after [m[ are TRUE. 

 

In particular statement [m + 1] is TRUE. So there 

is a FALSE statement below statement [m + 1]. Yet we 

said that all the statements after statement [m] are 

TRUE. We have a contradiction. 

 

 But we don’t yet have a paradox because we 

assumed that one of the statements is TRUE. We have 

therefore proved, by contradiction, that all the 

statements are FALSE. But in each case that would 

mean that there’s a TRUE statement below it, which 

can’t be if all the statements in the list are FALSE. Now 

we have a real paradox! 

 

 Go through the argument slowly a few times 

until you can see that we cannot assign truth values to 

these statements in any consistent manner. But note – 

this example doesn’t show that logic is nonsense. It 

merely shows that the artificially constructed infinite 

list of, what appear to be statements, don’t contain any 

genuine statements at all.  
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§3.7. The Largest Prime Number 
 How can you prove that 

there are infinitely many 

golden eggs in a magic goose? 

Just waking up each morning 

to a new gleaming golden egg 

is no proof. Perhaps 

tomorrow there will be none, 

or the next day. No, the only way to be certain that there 

will always be a new egg each morning is to cut the 

goose open and find out. But, you all know the story! 

 

 A prime number is a number bigger than 1 that 

has no factors other than 1 and itself. The list of prime 

numbers starts with 2, 3, 5, 7, 11, 13, 17, 19, 23, ... Are 

there infinitely many prime numbers or is there, 

somewhere out there, a largest prime number? You 

can’t settle it as easily as showing that there is no 

biggest number. You can’t add 1, or even 2, to a prime 

number and expect to get a prime number. Prime 

numbers have fascinated mathematicians for thousands 

of years because in a certain sense they’re as 

unpredictable as random numbers. 

 

 What is certain about them is their statistical 

distribution. While there’s no known formula for the 

n’th prime, the probability that a random number of a 

certain size is prime is known. This probability falls off 

as the size increases. Primes get rarer and rarer. Could 

they, in fact, dry up altogether? Euclid proved that they 
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do go on forever, even though they become scarcer and 

scarcer. This is a famous example of a proof by 

contradiction. 

 

Theorem: There are infinitely many prime numbers. 

Proof: Suppose to the contrary that there are finitely 

many prime numbers. 

Multiply them altogether and you get a number 

which is divisible by them all. 

Add one more and you get a number that's not 

divisible by any of them (a prime number can’t divide 

two successive numbers). 

Being bigger than every prime it can’t be prime 

itself, yet it must factorise into primes and so is 

divisible by at least one prime number. 

This is a contradiction and so there are infinitely 

many prime numbers. 
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INTERLUDE: STORY 

Pam and the Prime 

Minister 
 

 The pure voices of the boy sopranos floated up 

to the lofty recesses of St Mersennes. “... primes 

without end ... a-men”. The service was over. 

 Elisabeth turned to her friend and said, “Isn’t he 

a dream – those eyes!”. 

 But Pamela said, “I was more interested in his 

sermon.  It seemed very persuasive but I’m sorry, 

Elisabeth, I’m still an agnostic. I just can't believe in 

your doctrine of the Infinitude of Primes. I mean, 

perhaps it is true that there are infinitely many prime 

numbers. I can’t see how you could ever know for 

sure”. 

 “But Pam, you can see here in Primes Ancient 

and Modern and here in The Book of Common Primes 

that there are primes for ever and ever into eternity. 

Look there’s no sign of them petering out.” 

 They had reached the church door and the young 

curate held out his hand. 

 “I trust you enjoyed the service, Elisabeth?” He 

greeted them, while looking at Pamela with his 

penetrating blue eyes. 

 “Oh yes”, gushed Elisabeth, “I found the primes 

so inspiring. But I’m afraid my friend here is an 

unbeliever”. 
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 Pamela smiled sheepishly. “It’s just that I can’t 

see how you can be so certain. I admit that it seems very 

unlikely that the list of primes will ever come to an 

abrupt halt but ... I mean ... it is possible. After all 

primes become rarer as you go among the larger 

numbers. Is it inconceivable that they eventually give 

out altogether?” 

 She pointed vaguely in the direction of the 

churchyard, but there were too many people behind 

them waiting to shake the curate’s hand to continue the 

conversation. 

 “How about if you and Elisabeth come to the 

rectory next Sunday afternoon? We could talk some 

more over tea and scones.” 

 

* * * * * * * * * * * * * 

 

 Reverend Matthews poured the tea and passed 

round the excellent scones that Mrs Duffy had made. 

 “I’m sure Pam would like to believe that there 

are infinitely many primes but she doesn’t seem to have 

enough faith.” 

 “If only there was some way you could prove it 

to me,” sighed Pamela, “but of course that’s 

impossible. Even if I spent from now till the end of the 

world factorising numbers I’d only be considering a 

finite number of possibilities. There’s no way the 

question can ever be settled.” 

 “Well,” said the curate, “you do believe that 

there are infinitely many numbers altogether don’t 

you?” 
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 “Oh yes, of course, that’s obvious. I mean you 

just keep on adding one to get bigger and bigger 

numbers.” 

 “And if I claimed that there was a biggest 

number?” he asked. 

 “Then I’d say what about that number plus one?” 

 “Exactly. I'd be forced to admit that my claim 

was false.” 

 “But that wouldn’t work for prime numbers,” 

protested Pam, “because all primes are odd … except 

for the number two of course. And so the largest-prime-

plus-one would be an even number so it couldn't be 

prime. And the next number after that mightn’t be 

prime either.” 

 At this Reverend Matthews took a handful of 

cubes from the sugar bowl and laid them neatly in a 

row on the damask tablecloth. “Suppose,” he said, “that 

each of these sugar cubes represents a prime number. 

Here’s two and three, five, seven, eleven and thirteen, 

seventeen, nineteen and twenty-three. Now just 

suppose, for argument’s sake, that there does exist a 

largest prime.” 

 He scooped up the glistening white cubes and 

put them back into the sugar bowl. “Just suppose that 

this bowl contains every prime number up to the largest 

prime.” 

 “Well, alright then,” agreed Pamela, “just for the 

sake of argument. But don’t forget that I maintain that 

believing in a largest prime is just as illogical as 

believing in the Infinitude of Primes. You’d need 

infinite time to prove it one way or the other.” 
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 “I hope it won’t take that long,” he said looking 

at his watch and smiling, “I have 

to conduct Evensong at six 

o'clock!” He picked up the pot 

containing all-the-primes-in-the-

world and said, looking earnestly 

at Pam, “we have here every 

prime number that exists and, 

we’re supposing, there are only 

finitely many of them.” 

 “But a very large finite number,” said Elisabeth 

helpfully. 

 “Now we can multiply all these numbers 

together to get an exceedingly large number.” 

 “What if there’s not enough paper in the whole 

world to write it down?” asked Elisabeth. 

 “That's of no consequence”, he assured her, “we 

can conceive and discuss numbers bigger than the 

number of atoms in the cosmos. Don’t forget, a 

number’s existence doesn’t depend on the vital 

statistics of our universe.” 

 “But I don’t see what you're getting at”, said Pam 

as she took another scone. “The result of multiplying 

all the prime numbers won’t be a prime number itself, 

so where’s the contradiction, if there is one?” 

 “But would you agree that this product-of-all-

primes will be divisible, exactly, by all prime 

numbers?” 

 “Yes Pam, don’t you see,” said Elisabeth 

excitedly, “every prime number will go into it exactly 

because every prime will be one of its factors!” 
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 Pam did see. She was more concerned about 

where the argument would go from there. 

 “Well the product-of-all-primes will be divisible 

by all primes so the product-of-all-primes plus one 

can’t be divisible by any 

prime.”  Reverend 

Matthews leaned over 

towards Pamela to make 

sure she got the point. 

 “You mean because 

no two consecutive 

numbers can have a 

common factor?”, said 

Pam thoughtfully. 

 “Exactly. So we’re brought to a number which 

has no prime factors. Now this product-of-all-primes-

plus-one is too big to be a prime itself.” 

 He put his hand on Pam’s head to steady her 

from the impact of the contradiction that was about to 

follow. “But every number, if not prime itself, can be 

factorised into prime factors, so it must be divisible by 

at least one prime and hence we reach a contradiction. 

And remember Pam that contradiction only came about 

because we were foolish enough to contemplate a 

largest prime.” 

 Pam appeared to recover quickly from the shock 

of the contradiction, if she felt it at all. But in case of 

an aftershock his hand across the table steadied her 

arm. 

 Pam, in fact, was so deep in thought that she 

forgot for a moment that she even had an arm. She 
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screwed up her pretty, little nose, trying to make sense 

of it all. At last she discovered the arm, drew it away 

from the young curate’s grasp and picked up an unused 

sugar cube which had lain unnoticed on her saucer. 

 “Well all that means,” she said, “is that since it 

isn’t divisible by any of the primes already in our pot it 

must itself be prime, one we overlooked. So we just 

pop this extra prime in the pot.” And she dropped the 

sugar cube into the bowl. 

 “But”, protested Reverend Matthews, “you’ll 

just get the same contradiction all over again.” 

 Pamela picked up a handful of the cubes and 

dropped them one by one back into the bowl. “So, as 

fast as you keep getting a contradiction I just keep 

adding more and more primes to the pot. I can always 

keep one step ahead of you.” She grinned, confident 

that she had him beaten. 

 But Reverend Matthews yielded no ground. In 

fact he must have been about to deliver another 

intellectual earthquake because he felt the need to 

steady her arm again. “The point is Pam, you agreed 

that we had all primes in our finite pot, and now that I 

contradict you, you want to add another. That's hardly 

fair.” 

 But Elisabeth came to her rescue. “Is it such a 

sin to change one’s mind?” 

 “Look if it were a game of chess I’d be only too 

glad to let her change her mind to correct an oversight. 

But she can’t claim to be always one step ahead of me 

just because I let her keep changing her move every 

time she lands in trouble. Besides, finding a prime 
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that’s not in the prime pot isn’t an oversight. We agreed 

to define the contents of the pot to consist of all primes. 

It’s just an inescapable contradiction. And any 

assumption that leads to a contradiction must be false. 

Q.E.D.” 

 He appeared to think that this final blow would 

require a little extra support and it didn’t matter that he 

upset the sugar bowl in the process because those little 

crystal cubes had served their purpose. Pamela dis-

played her discomfort at her intellectual position by 

blushing brightly. She looked down at the spilt cubes 

on the table as if pleading with them to deliver her the 

inescapable conclusion of her argument. 

 At last she looked up into Reverend Matthews’ 

deep blue eyes and sighed, “I suppose you're right.” 

 But Elisabeth, who had becoming more and 

more agitated while all this was going on, said tersely, 

“I’m not so sure now. If believing in the Infinitude of 

Primes stops people from changing their minds I think 

I’d rather be an agnostic!” 
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4. THE 

UNCOUNTABLE 
 

§4.1. The Same-Number Balance 
 One might think that counting is the most 

fundamental concept in all of mathematics. Yet, as we 

have seen, it is a complex idea built on the even more 

fundamental one of same-number-as. The one-to-one 

pairing that defines same-number-as can play a similar 

role as the old-fashioned beam balance. 

 

This was a device that can only compare the 

weights of two objects. By itself it can’t weigh things 

absolutely. It merely shows you whether or not the 

weights are equal. Pairing off in a one-to-one 

correspondence is the balance we use for counting. 

 

Two sets have the same-number-as each other if 

it is possible to pair the elements of one exactly 

with the elements of the other exactly. 

 

 The reason for the hyphens in ‘same-number-as’ 

is because it’s a single concept, like ‘balance’. As yet 

we haven’t given an independent meaning to the word 

‘number’. Once we do, we will be able to identify 

‘same-number-as’ with ‘same number as’ in the sense 

of each set having a number and those numbers being 

equal. 
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§4.2. Standard Sets 
 A beam balance can 

be used for weighing things 

absolutely, as distinct from 

comparing weights, only if 

we have a set of standard 

weights. We need some 1 

gram weights and 5 gram 

weights, and so on, perhaps 

up to 1 kilogram weights. We put combinations of 

these into one pan of the scales until they balance 

exactly with the unknown weight. This enables us to 

associate a number with the object that we call its 

‘weight’. 

 

 Before we can count, that is, associate a number 

with a set to represent its size, we need some standard 

sets to use in the comparisons. In kindergarten we were 

introduced to a system of symbols 1, 2, 3, ... and 
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associated words. These ‘objects’ were initially 

meaningless things that had a defined ordering. ‘Two’ 

comes after ‘one’ and then comes ‘three’ and so on. We 

learnt to recite this list “one two three” as we would a 

nursery rhyme. 

 

 What we were setting up in our brains was a 

nested collection of standard sets (each fitting inside 

the other for convenience by just stopping at different 

places). These standard sets are: 

 

 STANDARD SET            SIZE 

 { } (empty set)   0 

 {1}     1 

 {1, 2}     2 

 {1, 2, 3}    3 

 {1, 2, 3, 4}    4 

 ..................    ... 

 

 What we are doing when we count a set is to 

select a standard set which pairs off exactly with it. The 

size of the set is just the number associated with it. (For 

finite sets it’s the last symbol in the list but when we 

come to infinite standard sets we’ll need to invent new 

symbols.) 

 

 Perhaps as adults we learnt to count in 

sophisticated ways, grouping things together for 

convenience. But if we go back to the primitive act of 

kindergarten counting we point to each object in turn 

and call out the next number in the sequence. The last 
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number we reach will automatically be the answer to 

the counting. 

 

 It’s important we get it quite clear what the act 

of counting really means before we introduce our first 

infinite number. 

 

To find the number of elements in a set: 

Find a standard set which can be put in one-to-one 

correspondence with it. 

The associated number is the answer. 

 

§4.3. The Smallest Infinite Number 0 
 Are you ready for your first infinite number? We 

need a standard set and then a symbol to represent its 

size. What better standard set than the set of all finite 

numbers 

{1, 2, 3,....}? 

 

 Now for a symbol. You see, we can’t use the last 

element in the list because there isn’t one. We could 

have used the standard ‘infinity symbol’, , but that 

would suggest that this is the only infinite number 

we’re going to get. Besides it’s not the symbol used by 

Georg Cantor who first investigated infinite counting 

around the end of the nineteenth century. He chose the 

first letter of the Hebrew alphabet, , and because it 

was the smallest infinite number he added the subscript 

‘0’. So our list of standard sets has been extended to the 

following: 
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 STANDARD SET            SIZE 

 { } (empty set)   0 

 {1}     1 

 {1, 2}     2 

 {1, 2, 3}    3 

                ..................  .. 

 {1, 2, 3, 4, 5, 6, .....}  0 

 

§4.4. In Search of a Bigger Infinite 

Number (Adding) 
 Now we begin our long journey, in search of an 

infinite number bigger than 0. With finite numbers we 

were always able to get a bigger number by adding one. 

 

 “My dad's played footy a trillion, trillion times!” 

 “My dad's played it trillion, trillion plus one 

times!” 

 

Let’s see if 0 + 1 is a bigger number than 0. Well 

it’s certainly not smaller. But could it be just as big? 

Before we can answer that we must say what we mean 

to add one to a number, in a way that makes sense for 

infinite numbers. 

 

 When we were learning how to add such finite 

numbers as 2 and 3 we possibly had a picture of two 

ducks and three rabbits. Count the ducks. Two. Count 

the rabbits. Three. How many animals altogether? 

Before we learnt to add we would have had to count the 

entire menagerie. One, two, three, four, five. The whole 
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collection of animals matches exactly with our standard 

set {1, 2, 3, 4, 5} and so its size is 5. We’ve 

demonstrated that 2 + 3 = 5. 

 

 As time went on we learnt ways of adding 

without counting. But if pressed for what it means for 

37 plus 63 to equal 100 we would have to say 

something like: “if you take 37 of one type of thing and 

combine it with 63 of something else we get 100 things 

altogether”. 

 

 Addition corresponds to combining two sets of 

things together. But it’s important that the two sets 

have nothing in common, otherwise we’re double 

counting. So here’s our definition of the sum of two 

numbers. 

 

To add the numbers m and n: 

(1) Take a set of size m. 

(2) Take a set of size n. 

(3) Ensure that these sets are disjoint (have no 

common elements). 

(4) Combine them into one set (take the union 

of these disjoint sets). 

(5) Put this union into 1-1 correspondence 

with a standard set. 

(6) The number of elements in this combined 

set is defined to be m + n. 

 

 Let’s use this to calculate 0 + 1. First we take a 

set of size 0. The standard set {1, 2, 3, ...} will do. 
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Now a set of size 1. The standard set of size 1 is {1}, 

but these two sets have ‘1’ in common. So let’s change 

the second set to {0}. 

 

The union of these two sets is {0, 1, 2, 3, ...}. 

 

 Now this certainly appears to be bigger than the 

set {1, 2, 3, ...} but is it? No. We can match {0, 1, 2, 3, 

...} off exactly with {1, 2, 3, ...}. Just write out these 

sets in rows and each number in the top row pairs off 

exactly with the one below it: 

 

0 1 2 3 4 5 ... 

 

1 2 3 4 5 6 ... 

 

Since neither set has a last element, there is nothing in 

one row without a mate in the other. According to our 

definition, therefore, these two sets have the same 

number of elements. In other words 0 + 1 = 0. 

 

 “But that’s absurd. If you add something extra of 

course you make it bigger!” Careful, you're revealing 

your parochialism. It’s just like someone who’s lived 

all his life in some small outback country town. “Of 

course, if you go into a bank they’ll know your name!” 

 

 You’re no longer in the finite backwoods you’ve 

been in all your life. This is the big city of the infinite. 

Some facts you’ve accepted as having universal 
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application, you now find are just curiosities that only 

work for finite numbers. Other things you’ve learnt do 

extend to the infinite. What can you trust in this strange 

new world? Just the definitions and logic. 

 

 So, contrary to naive intuition, you don’t make 

an infinite number bigger by adding one to it. Our 

search for a number bigger than 0 has so far failed. 

What about 0 +0? 

 

 For this we need two disjoint sets of size 0. The 

standard set {1, 2, 3, ...} will do for one of them and we 

can take the negative numbers for the other: 

{−1, −2, −3, ...}. 

We can set these out in a table with two infinite rows: 

 

1 2 3 4 5 ... 

−1 −2 −3 −4 −5 ... 

 

 Surely these can’t be paired off with our standard 

set for 0. To do that we’d have to squeeze both infinite 

lists into a single one. But that’s not difficult. Simply 

take from each row alternately: 

 

1, −1, 2, −2, 3, −3, ... 

 

 Nothing is left out, but now that they’re in a 

single infinite list we can pair them off with our 

standard set {1, 2, 3, ...}. 
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1 −1 2 −2 3 −3 ... 

 

1 2 3 4 5 6 ... 

 

 Note that any infinite set which can be listed in 

a single list has size 0. We just pair the first thing in 

the list with 1, the second with 2, and so on. Another 

word that’s used for this is countable. A set is 

countable if its elements can be listed. Countable sets 

include the finite ones, as well as those sets which can 

be put in an infinite list. Our goal is to find an 

uncountable set, whose size will therefore be bigger 

than 0. So far we’ve failed. 

 

§4.5. In Search of a Bigger Infinite 

Number (Multiplication) 
 We’ve not yet been successful in finding a 

number bigger than 0. But we were only using 

addition up till now – a much more powerful operation 

is multiplication. Perhaps we’ll find that 0  0 is 

bigger than 0. 

 

 What do we mean by multiplication? Repeated 

addition? But that won’t work with infinite numbers for 

it would mean that 0  0 is 0 + 0 + ..... with 

infinitely many terms. Instead we use the idea of 

ordered pairs. 

 

 A table with 5 rows and 7 columns has 35 cells. 
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Each cell corresponds to a pair (r, c) where  r  is the 

number of the row and  c  is the number of the column 

in which it lies. It’s an ordered pair, that is, for example, 

(3, 5)  (5, 3) because they refer to different cells. So 

here’s the basis for a recipe for multiplying infinite 

numbers. 

 

To multiply two numbers m and n 

(1) Take a set of size m. 

(2) Take a set of size n. 

(3) Form the set of all ordered pairs, with the 

first item in the pair coming from the first set 

and the second coming from the second set. 

(5) Put this union into 1-1 correspondence 

with a standard set. 

(6) The number of elements in this combined 

set is defined to be m  n. 

 

 Let’s use it to find 2  3 and see if we get the 

answer 6. Take a set of size 2, such as the standard set 

{1, 2}. Now take a set of size 3, such as the standard 

set {1, 2, 3}. These sets aren’t disjoint, but that doesn’t 
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matter for multiplication. The ordered-ness of the pairs 

will keep them apart. 

 

Now take all ordered pairs with the first item in 

each pair coming from {1, 2} and the second from {1, 

2, 3}. Here they are: 

 

(1, 1) (1, 2) (1, 3) 

(2, 1) (2, 2) (2, 3) 

 

and as you can see there are 6 of them. So we’ve 

proved, using our definition of multiplication, that 2  

3 = 6, which is just as well! Our extended definition of 

multiplication agrees with the way we've always 

multiplied numbers but it gives us a way of multiplying 

infinite numbers. 

 

Now before we tackle 0  0, let’s first try 2  0. 

 

First take a set of size 2. The standard set {1, 2} will do 

but for a change we’ll take {+, −}. 

Take a set of size 0. The standard set {1, 2, 3, ...} will 

do. 

The pairs (x, y) where x is a “+” or a “−” and y is in {1, 

2, 3, ...} can be put in a table as follows: 

  

(+, 1) (+, 2) (+, 3) ... 

(−, 1) (−, 2) (−, 3) ... 
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 Obviously this is very little different to what we 

had above and so 

2  0 = 0 + 0 = 0 

as we would expect. So we haven’t yet broken the 0 

barrier. But we still have 0  0 up our sleeve! 

 

 Take two sets of size 0. Since they don’t have 

to be disjoint we may as well take the standard set {1, 

2, 3, ...} for both. Now form all ordered pairs. These 

can be set out in a two-way infinite table: 

 

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) ... 

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) ... 

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) ... 

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) ... 

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) ... 

... ... ... ... ... ... 

 

 Can we squeeze this into a single infinite list? 

All we have to do is to list them by going along the 

diagonals, starting in the top left-hand corner: 

 

First comes (1, 1), then (2, 1) and (1, 2). Now across to 

(1, 3) and down the next diagonal and so on. 

 

 As a single list this two-way infinite table can be 

written as a single row: 

 

(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), (3, 2), 

(2, 3), (1, 4), (1, 5), (2, 4), (2, 3), …… 
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 0  0 elements, all written in a single infinite 

list, means that 0  0 = 0. We still haven’t 

succeeded in finding a number bigger than 0. Notice, 

by the way, that fractions can be represented by pairs 

of whole numbers so the above diagonal process would 

give us a way of listing all fractions. So while there 

appear to be more fractions than whole numbers, in fact 

the set of all fractions has size 0, just as the set of all 

whole numbers. Notice that a set can seem to be very 

much bigger than another, but using the concept of 

‘same size’ that we’ve adopted they can still have the 

same size. 

 

 Perhaps this apparent paradox disturbs you. 

Perhaps you say that this definition of ‘same size’ is the 

wrong one. Feel free to make up your own definition if 

you like. However you won’t be able to develop the 

very rich theory of infinite numbers that Cantor did and 

you’ll miss out on a large chunk of the mystery of the 

mathematical infinite. 

 

§4.6. The Search for a Bigger Infinite 

Number (Powers) 
 If we can’t find a number bigger than 0 we’ve 

made a lot of fuss for nothing. But in fact we’re just 

about to reach our goal. Raising numbers to powers is 

much more powerful an operation than either addition 

or multiplication. For example 10 + 10 = 20, 10  10 = 

100, but 1010 = 10000000000. 
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 You might like to try 0
0, but instead we'll 

settle for 20, which is easier to discuss and is just as 

big. 

 

How can we give a meaning to 2n for any 

counting number n. Multiplying 2 by itself n times is 

satisfactory for finite n but not if n is infinite. The secret 

to the correct definition lies in the concept of subsets. 

 

 One set is a subset of another if everything in the 

first set is an element, or member, of the second set. For 

example the set of all women in the world is a subset 

of the set of all people. 

 

 We allow a set to be a subset of itself, so the set 

of all people is another subset of the set of all people. 

We even include the empty set as a subset. The set of 

all people who are over 1000 years old is a subset of 

the set of all people. It’s just that it happens to be 

empty. 

 

 Take a set with two elements, say {1, 2}. How 

many subsets does it have? Well, what are the subsets 

of {1, 2}? First there’s the empty set { }. then the 

subsets {1}, and {2}, and finally the set itself {1. 2}. 

There are 4 subsets. This will be true of any set with 2 

elements. 

 

 Take a set with 3 elements such as {1, 2, 3}. 

What are the subsets? They are: 
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{ }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and then finally 

{1, 2, 3} itself. How many? Eight. 

 

 So a set with 2 elements has 4 subsets, a set with 

3 elements has 8. Is there a pattern? Yes, a set with n 

elements has 2n different subsets, at least if n is finite. 

 

 A quick way to see this is to consider that each 

subset corresponds to a decision for each element 

whether or not it is to be in the subset. Imagine a 

sergeant lining up his men and asking for volunteers for 

latrine duty. In true military fashion it’s the sergeant 

who does the volunteering. As he goes along the row 

of men he says, “you’re in, not you, nor you, yes I want 

you, no, no, no, yes, ...}. There are n choices, each a 

choice from two alternatives, so altogether there are 2n 

possible subsets. Now this, which is a fact for finite 

numbers, can be taken as the definition of 2n for infinite 

numbers. 

 

To raise 2 to the power n 

(1) Take a set of size n. 

(2) Form the set of all its subsets. 

(3) Put this union into 1-1 correspondence 

with a standard set. 

(4) The number of elements in this combined 

set is defined to be 2n. 
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§4.7. The Number 20 is bigger than 0 

 Powers of 2 grow quickly and it is a simple fact 

that 2n is bigger than n, for finite n. But we’ll show, by 

a cunning argument, that 2n is bigger than n for all 

numbers, n, finite or infinite. 

 

 Showing that 2n is bigger than n involves two 

steps. We’ll first prove that 20 is bigger than 0. 

 

20  0 

 “At least as big as” means finding a way of 

pairing off all the elements of a set with some of its 

subsets. That’s easy – you just pair off each element in 

the set with the corresponding set with one element. 

The elements of {1, 2, 3} can be paired off with some 

of its subsets, namely 1  {1}, 2  {2},  3  {3}. 

The fact that there are subsets left over, such as {1, 2} 

etc, shows that 2n is bigger than n, for finite n, but, as 

we have seen, having things left over after a pairing 

doesn’t necessarily mean ‘bigger’ because there could 

be another pairing that leaves nothing over. 

 

20  0 

 The proof that 20 and 0 are different runs 

along very familiar lines. We suppose that 20 = 0 

and get a contradiction. So suppose then that 20 = 0. 
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 Let ℕ be the set {1, 2, 3, ...}. This has size 0. 

To say that 20 = 0 means that there must be an exact 

pairing off of the elements of ℕ with its subsets. Every 

element has a corresponding subset and vice versa. 

 

 For a given number n, one of two things will be 

true. Either n belongs to the subset that it corresponds 

to, or it does not. 

 

 For example one of the subsets of ℕ will be ℕ 

itself, and of course the corresponding element belongs 

to it. At the other end of the scale, one of the subsets is 

the empty set and the corresponding element cannot 

belong to it. 

 

If, for example, 3 corresponds to the set {1, 4, 5} 

then 3 will not belong to the set that it corresponds to. 

If 7 corresponds to the set of all odd numbers then 7 

will belong to the set it corresponds to. 

 

 Suppose we call those elements which belong to 

the subset they correspond to, internal elements. Those 

which lie outside their corresponding subset will be 

called external elements. So in the hypothetical 

examples above, 3 will be an external element and 7 

will be an internal one. 

 

 In symbols, if we denote the subset that 

corresponds to the element x by S(x), and use the 

symbol ‘’ to denote ‘is a member of’ and ‘’ to 
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denote ‘is not a member of’, then we can describe these 

properties of being internal and external as follows: 

 

x is internal if x  S(x) 

x is external if x  S(x) 

 

 Of course whether an element is internal or 

external would depend on the particular one-to-one 

correspondence. But if somebody claimed to have a 

way of pairing off all the elements of a set with all of 

its subsets (rash claim!) it’s perfectly reasonable to 

expect that they could tell us whether any given 

element is internal or external. 

 

 Suppose, for argument sake, that somebody 

claimed to have paired off all the elements of {1, 2, 3, 

...} with all of its subsets. Then, in principle, they must 

have a list such as the following: 

1  {11, 32, 117} 

2  set of powers of 2 

3  empty set 

4  set of all multiples of 3 

5  set of prime numbers 

... ... .......... 

3427  set of all numbers 

... ... .......... 

185367  set of even numbers 

... ... .......... 

673867  set of all external numbers 

... ... ......... 
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 If this was indeed such a list then 1, 3, 4 and 

185367 would be external. They would lie outside their 

corresponding set. The elements 2, 5, 3427 would be 

internal. If somebody claimed to have such a list it 

would also be reasonable, in principle, for us to ask 

where the set of all external elements appears in the list 

- what number does this set correspond to? There is 

such a subset and so if the pairing is exact, as claimed, 

there’s a corresponding element. In the above example 

we are supposing that it’s 673867. 

 

 Is 673867 itself an internal number or an external 

one? It has to be one or the other. 

 

If it’s internal then it belongs to the set that it 

corresponds to, that is, it belongs to the set of all 

external numbers which would make it external. That’s 

nonsense. But, if it’s internal, then it’s external. So it 

can’t be internal. 

 

 But wait! If it is external, it’s a member of the 

set of external numbers. So it does belong to the set it 

corresponds to. But this would make it internal! That’s 

nonsense too! 

 

 If it’s internal then it’s external. If it’s external, 

it’s internal. One big resounding contradiction! And 

that contradiction all rests on the assumption that we 

started with, that the elements could be paired off with 

the subsets. Therefore they can’t be. That is, the 
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number of elements of any set cannot be paired off 

exactly with the subsets. 

 

 This argument can be used for any set. 

 

THE ELEMENTS OF A SET CANNOT BE 

PAIRED EXACTLY WITH ITS SUBSETS 

Suppose the elements of a set are paired off 

exactly with its subsets. 

Let S(x) denote the subset that corresponds to x. 

Let Y be the set of all x such that x  S(x). 

Let y be the corresponding element. 

So S(y) = Y. 

If y  Y then by the definition of Y, y  S(y), 

that is, y  Y. 

And if y  Y then y  S(y) and so y  Y. 

This is a contradiction, which tells us that such a 

1-1 pairing is impossible. 

 

§4.8. The Universe of Infinite Numbers 

 So 20  is bigger than 0. We’ll call it 1. 

Actually 1 is usually defined to mean the next infinite 

number after 0. But nobody knows whether that is 

20  or not. So it seems reasonable to define 1 to be 

20. But if we do that, what if somebody finds an 

infinite number between 0 and 20? We’d then have 

to call it ½ or something like that. Relax! That will 

never happen. Nobody will ever find any numbers 

between 0 and 20. How can we be so sure? Because 
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it has been proved that the existence of something 

between the two is unprovable. Surely that means there 

aren’t any! Not exactly, because nobody has been able 

to prove that the next number after 0 is indeed 20. 

What’s more, nobody ever will because a proof exists 

that shows that it is impossible to prove the next 

number after 0 is 20! 

 

 Amazing stuff, but all quite logical. We can 

prove that the statement that there’s no number 

between 0 and 20 can never be proved. We can also 

prove that the statement there is a number between 0 

and 20 can never be proved. The question is 

undecidable. 

 

 The statement that nothing exists between 0 

and 20  is called the Continuum Hypothesis. It’s an 

hypothesis, not a fact. But it isn’t a conjecture that will 

be settled one day. It will forever remain an hypothesis. 

You could say that whether it is true or not is a matter 

of faith. 

 

 “I believe in the Continuum Hypothesis,” your 

creed might run. Fine. That’s perfectly consistent with 

everything else we know about mathematics. But the 

opposite view is equally logical. I suppose the proper 

stance to take would be that of an agnostic. 
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On the other hand, even though it can never be 

proved, there’s a metalogical argument in favour of 

believing in the Continuum Hypothesis. Since nobody 

will ever find an actual example of a number between 

the two (for if they did the matter would be decidable) 

then for all practical purposes there isn’t one. Though 

this falls short of an actual rigorous proof of non-

existence, it seems a reasonable position to take and 

that is the position that most mathematicians take. We 

are believers in the Continuum Hypothesis. 

 

 So taking 1 to be 20 we can then use the same 

argument as above to show that 21 is bigger than 1 

and so on. That means there is a whole infinity of 

infinite numbers: 

 0, 1, 2, 3, 4, ... each bigger than the one before. 

 

 If we set out to construct a catalogue of numbers 

we would start with two rows in our table: 

0 1 2 3 4 … 

0 1 2 3 4 … 

 

 But, as they say in the TV advertisements for 

steaks knives, “there's more!” If you take a whole 

collection of sets, one for each of the infinite numbers 

in the second row of this table, and combine all these 

sets into one huge set (we call this “taking the union”) 

the size of that set will be at least as big as any number 

in the row, and hence must actually be bigger than 

anything in the row (think about it!). This will then give 
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us a number bigger than anything in these two rows, so 

we can use it to start a third row. 

 

 But then by taking successive powers of 2 we 

can work our way along the third row to produce a third 

infinite sequences of infinite numbers. But wait, there’s 

more. In the same way we got from the second row to 

the third we can get from the third to a fourth row, and 

a fifth and so on. 

 

 So our catalogue of numbers, all but the first row 

being infinite, now covers an entire infinite page, with 

infinitely many infinite rows. But there’s still more. 

There exists a number bigger than any number on the 

page and so we can start a second page, and a third, and 

so on until our catalogue occupies infinitely many 

pages, each with infinitely many infinite rows. 

 

 But why stop at one such volume. We can have 

infinitely many volumes on an infinitely long shelf, and 

infinitely many such shelves .... The human mind is a 

wonderful thing to be able to conceive, and even think 

logically about, such expansive concepts. 

 

 Is there any practical use to all this? Such a 

question brings us back to earth with a thud, even 

though the answer is “yes”. Mathematicians have a real 

use for knowing about 0, 1 and to some extent about 

2. We could live without the others. The number 1 

is the number of points on a line, or the number of real 
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numbers. The number 2 is the number of functions 

from the set of real numbers to itself. 

 

 Where does 
0
0 fit into all this? Is it bigger 

than 20? No, in fact it can be shown that it’s just the 

same as 20. 
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INTERLUDE: RADIO 

FEATURE 

“Beyond the Finite” 
 

MUSIC: Also Sprach Zarathustra by Richard Strauss 

 

MALE VOICE: Beyond the familiar numbers 1, 2, 3, 

... of the kindergarten, beyond the hundreds of the 

cricket scoreboard, beyond the millions, tens of 

millions, millions of millions of economic statistics, 

beyond the billions of billions, billions of billions of 

billions of astronomy ... beyond all finite numbers, lies 

... the infinite! 

 Man, imprisoned though he is in a finite world, 

is able to glimpse the infinity beyond, through the tiny 

barred windows of religion, philosophy and 

mathematics. 

 

FEMALE VOICE: Infinity is an ideal that one can 

approach but never reach. 

 

PRESENTER: This popular view of the infinite has 

grown out of the mathematical concept of infinite 

limits which underpins the calculus, but it’s not the 

only insight that mathematics can give us into the 

nature of the infinite. A somewhat more recent 

development, though known to mathematicians for 
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over a hundred years, has yet to make its imprint on the 

popular mind. 

 In the 1890s, Georg Cantor extended the concept 

of counting to infinite collections and came up with a 

theory of transfinite numbers. Not just a single 

unattainable infinity, but a whole infinity of bigger and 

bigger infinite numbers. 

 To appreciate this mind-boggling concept I want 

you to come with me on a journey – a journey of the 

imagination –  a journey beyond the finite to the infinite 

world of Infinland. 

 

MUSIC: Enigma Variations by Edward Elgar 

 

********************** 

 

 Once upon a time there was, in a far-off place, a 

kingdom called Infinland in which there lived a race of 

creatures, rather similar to men only much smaller, 

called Infins. There was nothing very remarkable about 

these Infins except that there were infinitely many of 

them. I don’t mean that their population was exploding 

at an ever-increasing rate, approaching infinity. It was 

infinite and always had been. 

 Infins were happy little creatures. And so they 

should be for their infinite land was ideally suited to 

cope with an infinite population. There were none of 

the annoying shortages that we experience in our 

overcrowded world. 

 Take housing for example. Every Infin had his 

own house. When a pair of young Infins got married 
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and left home, they were allowed to choose any house 

in the kingdom. Never mind that it was already 

occupied.  The family living there, and all those beyond 

that point on that side of the infinitely long street, were 

obliged to move up to the next house to make room. 

Because the street was infinitely long there was no last 

house in the street to be pushed off the end. A 

marvellous system! You and I might resent the frequent 

moving, but the Infins had never known any other way. 

 

 

 They all lived on both sides of two roads – East 

Road and West Road. Each of these stretched for ever, 

east or west. To the north and 

south of these roads were the 

royal gardens belonging to King 

Aleph II. These, too, stretched 

for ever to the north and to the 

south. Situated right between 

East Road and West Road was 

the castle of King Aleph. So that 

the inhabitants East Road could 

have contact with those on West 

Road the king very kindly 

provided a right of way across 

the castle grounds – for which 

he charged a modest toll. 

 Now the Infins had not 

always lived on East Road or West Road. In fact once 

the Infins’ houses had completely covered what were 

now King Aleph's fields. Then, the castle in the middle 
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enclosed a modest garden within its walls. Around this 

ran the road called “The Circle”. From this stretched 

the North Road, the South Road, the East Road and the 

South Road – all going on forever out from the castle. 

 These were the major highways of the kingdom, 

but the whole area was crossed by a network of minor 

roads as well. Some ran north and south and others east 

and west. All roads stretched on forever in both 

directions. 

 One day, King Aleph decided that his modest 

garden was not big enough. He decreed, therefore, that 

henceforth Infins must only live on either East Road or 

West Road. 

 In any ordinary 

kingdom this would have 

created a severe housing 

problem. However, as the 

Infin kingdom was infinite 

it was possible to rehouse 

everybody on either East 

Road or West Road. On the 

day appointed, the King sent a messenger around the 

kingdom. 

 Starting with the houses nearest the castle, he 

travelled in a spiral fashion around the castle, moving 

further out all the time. Calling at each house 

(including those already on East Road or West Road) 

he gave out their new addresses in order, alternating 

between East and West Roads. 

 Travelling in this spiral fashion, the messenger 

was able to call upon every house. In an ordinary 
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kingdom this would have taken him forever. In fact he 

would have never got to the end. But Infins can move 

infinitely quickly if they have a mind to and so the job 

was done in next to no time at all. And because there 

were infinitely many houses on East Road and West 

Road he never ran out of new addresses to give the 

families. 

 The traffic chaos was unimaginable as families 

moved to their new houses. Even families already 

living on East or West Roads were unhappy about the 

change for they had to move much further out. 

 All the houses left unoccupied were demolished 

and the land became gardens for the king’s private use. 

Since that time traffic on East Road and West Road has 

been in a permanent state of chaos and Infins who had 

once been close neighbours now lived vast distances 

apart. 

 This mean and despotic act was just one of the 

many carried out by King Aleph II. As you may have 

gathered, the King was very unpopular. Yet he was 

allowed to rule as the people respected the ancient 

charter laid down by the much-loved grandfather of 

King Aleph II, Aleph Zero. In this charter it was laid 

down that his descendants would be entitled to rule so 

long as they carried out their duties as Lord of 

Committees. 

 That’s another peculiar thing about the Infins – 

their love of committees. They liked nothing better than 

forming committees. They formed committees at work 

and committees at school. Every Infin family was 
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organised into committees and subcommittees and sub-

sub committees. 

 Infins waiting at bus-stops would immediately 

elect a chairman and ask 

for the minutes of the last 

meeting to be read out. 

 Another curious 

feature of the Infin 

committees is that the 

identity of the committee 

depended solely on the 

collection of Infins present. If any Infin was absent 

from a regular meeting the committee was deemed to 

be a different one. This made the call for apologies 

redundant because, by definition, every member was 

automatically present. But it did complicate the reading 

of the minutes because they had to recall when and 

where and under what circumstances that exact 

collection of Infins last met. A committee that met by 

chance at a bus-stop one day may have had exactly the 

same membership as the one that happened to be in the 

same laundromat on the same day many months 

previously and so constituted the same committee. 

 The King, as Lord of Committees, had the 

statutory right and duty to choose a chairman for every 

committee. However he had to respect the rule, laid 

down by Aleph Zero: 

 

No Infin may be chairman to more than one 

committee. 
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 So long as he carried out this task the Infins 

allowed him to continue to rule. But if he ever defaulted 

he lost the right to rule. 

 Now Infins are notorious for their poor 

memories, the King included. So it often happened that 

he forgot that he had chosen a certain Infin previously 

and made the mistake of choosing him to chair a totally 

different committee. The trouble is that although Infins 

often thought they could remember that someone had 

doubled up, they couldn’t quite be sure. And although 

they always took minutes of their meetings, they were 

so disorganised that they could never find them later 

when they needed them. 

 So the King continued to get away with his 

ineptitude. He made out that he consulted a large 

volume in which he had written down all possible 

committees and his chosen chairmen but the truth was 

that he just chose the first name that came into his head 

or, if he couldn't remember any name he just pointed to 

someone and said, “you there, I appoint you”. 

 The chairman could be, and often was, chosen 

by the King from within the committee. Such a 

chairman was called an internal chairman. At other 

times the King chose a chairman from outside, known 

as an external chairman. 

 An external chairman was not actually co-opted 

because changing the composition would change the 

committee into a quite different one which would of 

course require a different chairman. No, the Infins were 

not so stupid as to allow themselves to be caught in a 
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recursive trap like that. An external chairman chaired 

but always from the outside. 

 Now although he usually made a random choice, 

King Aleph was occasionally put in the position of 

having to be very crafty in his choice. Once, in an 

attempt to overthrow the King, the Infins called 

together a committee consisting of everybody except 

the King. The King clearly could not suffer the 

indignity of being the only one excluded and so he 

chose himself as external chairman of that committee. 

 Another attempt was made to overthrow the 

King by Count Able, one of the noblemen of the 

kingdom. Count Able maintained that King Aleph 

constituted a committee of one and asked the King to 

select a chairman. Now King Aleph remembered that 

he had nominated himself as external chairman of the 

Every-One-Except-The-King committee, and just in 

case Count Able remembered that too, he thought it 

safest to select an external chairman. So he chose 

Count Able himself as that external chairman. And, for 

his insolence he cast Count Able into solitary 

confinement in the dungeons. As he was being dragged 

off he screamed for the King to appoint a chairman of 

the Solitary Confinement Committee that consisted of 

just Count Able. You see, he couldn't be named as an 

internal chairman – he was already external chairman 

to the Kings-Of-Infinland Committee and he hoped that 

whoever got to be external chairman might be able to 

help him escape. 
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 Of course the King merely appointed the soldier 

who kept guard outside Count Able’s cell as external 

chairman so such hopes of escape came to naught. 

 Nothing ever lasts for ever, not even in Infinland, 

and eventually Count Able was released. But during his 

confinement he had hit upon a cunning plan to trap the 

King. 

 He called a meeting of the Every-One-Except-

The-King Committee. Of course, as external chairman, 

the king had to come too. So the whole infinite 

population of Infinland crowded into the Great Meeting 

Hall of the castle. Count Able respectfully asked leave 

to put a question to the King, and leave was granted. 

 “Oh noble King, Lord of Committees, you have 

the royal privilege of choosing chairmen for all 

committees both actual and potential.” 

 “Indeed I do. I have it all written down in my 

Book of Chairmen here.” 
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 “And most noble King, you may not choose the 

same Infin to chair more than one committee.” 

 “Quite right. That's why I have it all written 

down.” 

 “So nobody can possibly be both an external and 

an internal chairman.” 

 “Certainly not for that would violate my 

grandfather’s charter and I would lose the right to rule.” 

 “So you would be able to consult your book and 

tell us who among us you have chosen to be external 

chairmen.” 

 “That is so. At the back of the book I have an 

index that lists the name of every Infin and next to those 

whom I have honoured by choosing them as chairmen 

I have recorded the letter ‘E’ to denote that they are an 

external chairman or ‘I’ to denote an internal 

chairman.” 

 Of course the King was making all this up. The 

great book was completely blank but nobody was 

permitted to look inside. However the more he said the 

more poor King Aleph was playing into Count Able’s 

hands. 

 “Then I wish to call a meeting of the Committee 

of all External Chairmen. Would your highness please 

read out the names.” 

 The King should have insisted that this would 

take too long but, eager to demonstrate his power as 

Lord of Committees he foolishly co-operated far too 

readily. 

 “Certainly,” he said lifting up the great book and 

indicating a line of division. “You my people on my 
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right are the external chairmen of Infinland – oh, plus 

myself and Count Able. All others are dismissed.” 

 Half of the Infins present filed out muttering. 

Many of them half-remembered having been appointed 

external chairman of some committee in the past but 

their memories were not sufficiently strong to 

contradict the King. Someone else remarked on the 

extreme coincidence of the external chairmen 

happening to be all standing on one side. But even an 

extreme coincidence is not a water-tight proof of fraud, 

not if it’s the King who is supposed to be guilty. 

 “So your Infinite Majesty we here comprise all 

the external chairmen of your kingdom. You’re sure?” 

 “Of course I’m sure. It’s all written down in my 

book.” 

 “Each one of us is the external chairman of 

some committee?” 

 “That’s what I said.” 

 “And those who've left are either internal 

chairmen ...”. 

 “... or they’re not chairmen of anything”. The 

King finished that sentence but he had no idea of the 

next one! 

 “Then I ask you, as Lord of Committees to 

appoint a chairman of this present committee.” 

 The king pretended to consult his book while he 

thought this out carefully. He sensed a trap but he knew 

he was safe because of the incredibly bad memories of 

Infins. If he couldn’t remember whether this present 

collection of Infins had ever assembled before nor 

could anyone else. So even if he was inconsistent with 
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what he had done in the past nobody would be able to 

remember. No he was quite safe. 

 He was just about to point to the nearest Infin 

and announce that he was chairman when the thought 

struck him. That would make him an internal chairman 

but no internal chairman remained. He’d confirmed 

that just a moment ago. The memory of an Infin is bad, 

but it’s not that bad! They could all remember that only 

external chairmen remained. 

 That was close. He’d nearly put his foot in it. But 

fortunately he was a match for Count Abel. All he had 

to do was remember the name of someone who’d left. 

He consulted his completely blank book. 

 “I appoint the last Infin who left as the chairman 

of this committee.” 

 Count Able had him, and King Aleph knew it as 

soon as he had said this. The King hid his face behind 

the book to hide his blushes. 

 “So if he’s not here, that would make him an 

external chairman of this committee. But all external 

chairmen are present in this hall. Q.E.D.” 

 Immediately there was an uproar and the Infin 

Revolt had begun. Very few Infins knew what the 

letters Q.E.D. stood for but they had been told that 

those three letters would be a sign that the revolution 

had begun. Perhaps Q.E.D. meant “Quick, everyone 

destroy” because they did just that. The castle was 

destroyed and Count Abel was declared the next King. 

 At his induction he made just two conditions to 

his accepting the crown. 
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 “I ask two things as your new King. Firstly I 

wish not to assume the duties of Lord of Committees 

and secondly I ask that throughout the rest of my life I 

be granted ownership of any house on West Road 

which is situated next door to one that I already own.” 

 The Infins thought that both of these were very 

reasonable requests and the Count became King. 

 What the Infins had forgotten was that, although 

Count Abel would now be living in the castle, as king 

Aleph III, he already owned number 31761 West Road. 

So now at his induction he was now to granted 

ownership of number 31763 West Road. But that then 

meant he had to be granted ownership of number 

31765, and so on. 

 Somebody said something about this being the 

Principle of Induction. But King Aleph III was much 

more gracious than the deposed Alep II. He said that all 

those living on the odd side of West Road didn’t have 

to move. They could rent the house they were living in. 

Moreover the rent was infinitesimal, so everyone was 

happy. 
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5. THE 

UNIMAGINABLE 
 

§5.1. How Do We Know That The Earth Isn’t Flat? 

 “The world is flat and the 

greatest hoax of history is the belief 

that it’s round.” I remember hearing 

this many years ago when I was at 

university. The claim was made at a 

lunchtime lecture given by a 

representative of the Flat Earth 

Society. Everyone in my physics 

class went along to heckle this ‘nut’. 

But we were stunned by the fact that 

he appeared to know far more physics than we did and 

every objection that we raised was answered by the 

most convincing and authoritative of explanations. 

 

The belief that light travels in straight lines is the 

illusion, he said. Ships appear to disappear over the 

horizon because the light is bending. And the fact that 

nobody has ever reached the edge of the world is 

because the closer you come to it, the smaller you 

become and the more slowly you travel while 

maintaining the illusion of constant speed. We’d heard 

of the Theory of Relativity and the lecturer’s 

explanations seemed to be consistent with the very 

vague understanding we had of that theory. 

 



 160 

           

 

         ? 
 

 

 We began to believe that he might just be right! 

No doubt this was partly due to the heavy atmosphere 

in the lecture theatre and to his charisma. As we walked 

out we felt that he was probably wrong but we were no 

longer sure we could prove that he was. 

 

Now of course nobody who has ever walked up 

and down mountains believes that the world is quite 

flat. Nor is it as perfectly round as a mathematical 

sphere. It is, after all, slightly flattened at the poles and 

its surface is somewhat distorted by mountains and 

valleys. When the flat-earthist says that the world is flat 

he means that it is essentially a flat disk, but one that 

may be distorted in some way like a piece of rubber that 

has been stretched and rippled. We round-earthists 

likewise assert that the surface of the earth is essentially 

a sphere but concede that it is actually somewhat 

distorted. The difference between a disk and a sphere 

is not simply one of shape or curvature. It’s 

‘topological’ — it has to do with the way the surface is 

connected. 
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 The surface of a sphere can be distorted into 

many different shapes but without tearing it can’t 

become a disk. A disk can be bent to form a hemisphere 

or even stretched till it becomes a sphere with a little 

round hole. But only by sewing up the hole (the reverse 

of tearing) could it become a complete sphere. 

 

 The difference between a ‘flat’ earth and a 

‘round’ earth is a topological one. Consider the 

following conceptual experiment. Place a rubber band 

around the base of the North Pole (assuming it to be an 

actual pole hammered into the ice – or if there is no ice 

left there we might need to float a stick on a buoy). 

Now imagine that this rubber band is enormously 

elastic and can be stretched as much as we want. Is it 

possible, by stretching the band, but without breaking 

it, and keeping it at all times in contact with the earth’s 

surface, to free the band from the pole? 

 

The answer depends on which topological model 

you accept for the surface of the earth. If it’s 

topologically a sphere, the answer is “yes”. All you 

have to do is to stretch the band over the surface until 

it runs right around the equator. Then continue moving 

it south, keeping it in contact with the surface of the 

sphere at all times, and let it shrink again as it moves 

towards the South Pole. Now back to its original size it 

can be slid back north till it lies right beside the North 

Pole – no longer enclosing it. 
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But if the earth is topologically flat then there’s 

no way it could be freed from the pole. No matter how 

much the band is stretched, the pole will remain 

‘inside’. It’s tempting to say that we could stretch the 

band till it runs right around the boundary of the disk 

and then roll it onto the other side. But remember that 

if the earth is really flat there is no other side, or at least 

it doesn’t belong to the surface of the earth. So this is a 

topological way of distinguishing a sphere from a disk. 

 

 

 

 

 

 To decide which model fits the earth we just 

have to carry out this experiment. But there’s no need 

to have an actual band that can be stretched so much. 

The circles of latitude represent the successive 

positions of such an elastic band moving continuously 

over the surface. Our flat-earthist might question the 

validity of the circles of latitude and so remain 

unconvinced. However the aim of this introduction is 

not to settle the geographic question but to ask 

topological ones. 
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On the other hand the earth might be neither a 

topological disk nor a sphere. Perhaps it’s really a 

doughnut (or to use the more mathematical word, a 

‘torus’). Let’s leave aside the objection that if so then 

one part of the world would cast a shadow on the other. 

This depends on certain assumptions about light and 

leads us away from topology and back into physics. If 

we lived on the surface of a torus and had no experience 

of anything above or below the surface, how could we 

tell that it wasn’t the surface of a sphere? After all you 

can circumnavigate both a sphere and a torus by 

travelling in what appears to be a straight line. 

 

 

 

 

 

 

 

 In other words we’re asking for a topological 

difference between a torus and a sphere or a disk. The 

infinite elastic band experiment works for the sphere 

but not for the torus (remember that every part of the 

band must always remain in contact with the surface at 
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all times). But it can’t distinguish a torus from a disk. 

This calls for a different conceptual experiment — the 

Great Wall Experiment. 

 

Build a great wall on the surface of the earth so 

that its two ends meet. This amounts to drawing a 

closed curve on the surface. Those inhabitants inside 

the wall are safe from the savage hordes outside … or 

are they? What if the surface of the earth is a torus 

(doughnut shape) and the wall is built around the 

smaller radius? The enemy is safely on the other side 

of the wall, until they wake up to the fact that all they 

have to do is to travel around the larger radius. Here we 

have a closed curve that doesn’t separate the surface 

into an inside and an outside. This can happen on a 

torus but it can’t happen on a disk or a sphere. 

 

 

 

       

 

 

                                                                                            

 

 

 

 

With the torus, which side of the wall is inside?      

 

INSIDE OUTSIDE 
INSIDE 
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§5.2. Do Parallel Lines Exist? 
 Parallel lines are lines that don’t intersect. Of 

course it’s easy to have line segments that don’t meet 

but, if we extended them far enough, they might. Here 

we’re talking about whole lines, extending indefinitely 

in both directions. 

 

 In the normal Euclidean plane there are indeed 

pairs of lines that don’t intersect. We just have to draw 

them so that they’re exactly the same distance apart all 

the way along. It might be difficult to do this precisely. 

But, of course, we’re talking about an imaginary ideal 

Euclidean plane where things can be as exact as we 

want them to be. So the answer to that question is an 

easy “yes” – parallel lines do exist in the Euclidean 

Plane. Or, to put it another way, there are pairs of lines 

that have no point of intersection. 

 

 On the one hand it’s true that through any two 

distinct points there’s exactly one line. There are no 

exceptions here – any two distinct points determine a 

line. But it is not true if we reverse the role of lines and 

points. It is not true that any two distinct lines intersect 

in exactly one point. There are exceptions – parallel 

lines. 

 

 We have a similar situation here to what existed 

with the real number system. It isn’t true that every real 

number has square roots. At least it wasn’t true until we 

invented imaginary numbers. Perhaps we can invent 



 166 

imaginary points where parallel lines can meet. Indeed 

we can. We enrich the Euclidean plane by inventing 

extra imaginary points – only they’re called ‘ideal 

points’. 

 

 For every direction we invent an ideal point and 

decree that all lines in that direction pass through the 

corresponding ideal point. But are we allowed to make 

such a decree? Indeed we are, provided that the 

geometry we produce is consistent – that is, provided it  

doesn’t lead to any contradictions. So the concept of a 

line passing through a point will be just the ordinary 

one if the line and the point are ordinary points on the 

Euclidean plane. But if the point is an ideal point, 

‘passing through’ will mean that the line is in the 

direction that corresponds to the ideal point. 

 

 It would help if we could see what is going on in 

pictures. We can’t draw the infinite Euclidean plane on 

a finite sheet of paper, but we can represent it by a 

rectangle drawn in perspective. 

 

 

 

 

 

 

  



 167 

We call the points on the Euclidean plane ordinary 

points. 

 

 

                                . . . . . . . . . . . . . . 

                                . . . . . . . . . . . . . . . . . 

                                 . . . . . . . . . . . . . . 

 

 

We call the lines on the Euclidean plane ordinary 

lines. 

 

 

 

 

 

 

We sort these ordinary lines into parallel classes.  

 

 

 

 

 

 

A parallel class consists of a line together with all lines 

parallel to it. 
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For each parallel class we invent a new point, called an 

ideal point. 

 

 

 

 

 

 

These ideal points don’t lie on the Euclidean plane. 

Where are they then? The answer is simply “in our 

minds”. However, to assist our imagination, we can put 

these ideal points on our diagram outside of the shape 

that represents the Euclidean plane. 

 

  

 

 

 

 

 

 

As well as ordinary points lying on ordinary lines in the 

usual way  
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we decree that all lines in a given parallel class (and no 

others) pass through the corresponding ideal point. 

 

 

 

 

 

 

 

 

We also invent a new line called the ideal line 

 

 

  

 

 

 

 

 

and decree that this line passes through all the ideal 

points (and no others). 
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The resulting geometry is called the Projective plane. 

It contains all of the Euclidean plane, as well as the 

extra ideal points and the ideal line. Any theorem that 

we can prove for the Projective plane will be true for 

the Euclidean plane simply by taking the points and 

lines to be ordinary ones. 

 

§5.3. The Projective Plane Has No 

Parallel Lines 
 Now that we’ve invented the ideal points and 

lines, our Projective plane has no parallel lines. Any 

two distinct lines meet in exactly one point. There are 

no exceptions. If the two lines are ordinary lines they 

meet in an ordinary point in the usual way, provided 

they’re not parallel in the Euclidean plane. But if they 

are parallel there we’ve invented an ideal point in 

which they can meet. 

 

 

 

 

 

 

 But what if one line is ordinary and the other is 

the ideal one. No problem. The ordinary line has a 

certain direction and passes through the ideal point that 

corresponds to that direction. And of course both lines 

can’t be ideal as there’s only one ideal line. 
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 But before we get too excited we might have lost 

the first property in trying to fix up the second. Is it still 

true that through any two distinct points there is exactly 

one line. Let’s think it through, case by case. 

 

 If the two points are ordinary they lie on exactly 

one ordinary line, in the usual way. They can’t also lie 

on the ideal line (that would make a second line passing 

through both) because the ideal line has only ideal 

points. 

 

 

 

 

 

 What if one point is ordinary and one is ideal? 

The ideal point will correspond to a certain direction. 

And through any point in the Euclidean plane there is 

exactly one line in any given direction. 
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 Finally, if both points are ideal then they lie on 

the ideal line. Could they lie on an ordinary line as 

well? Well, no. The two distinct ideal points would 

correspond to two distinct directions and that would 

mean that the ordinary line would go in two directions 

at once. 

 

 

 

 

 

 

 

§5.4. Can We Describe The Projective 

Plane Precisely? 
When we observe a long straight railway line, 

receding into the distance, it looks as if they meet on 

the horizon. Renaissance artists had no problem with 

the concept of parallel lines meeting a point. This 

happens all the time in a perspective drawing. 

 

 

 

 

 

 

 

 Consider what an artist does when he 

sketches a scene. You might think that he represents 

points in the scene by points on the canvas, but it would 
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be more accurate to say that he represents rays not 

points. Every ray emanating from his eye corresponds 

to a single point on his canvas. This leads to the next 

way of thinking about the real projective plane. 

 

 We start with 3-dimensional space and choose a 

plane, which we call the ‘canvas’ and a viewpoint lying 

away from the ‘canvas’ where we place an ‘eye’. 

 

 

 

 

 

 

 

 

 The plane is a complete Euclidean plane (rather 

larger than the average canvas!). We now define a 

projective point to be a line through the eye. In 

practice the artist can only see what’s in front of his eye 

but it suits us to use whole lines rather than rays. 

 

 

 

 

 

 

 Every point on the canvas corresponds to a 

projective point but there are some projective points 

left over that don’t correspond to points on the canvas. 

These are the lines through the eye that are parallel to 

 Projective 

point 

corresponding 
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the canvas. These will lie on the plane through the eye 

that is parallel to the canvas plane. 

 

 

 

 

 

 

 

 It may seem strange to call something a ‘point’ 

that we’d normally call a line. That’s why we add the 

prefix ‘projective’. It bumps things up by one 

dimension. The rationale behind it is that a projective 

point (line through the artist’s eye) would appear as a 

single point on the artist’s canvas. 

 

 We now define a projective line to be any plane 

through the ‘eye’. 

 

 

 

 

 

 If the artist paints two parallel lines on his canvas 

they represent two projective lines in space (that is, 

planes through the artist’s eye). It’s a fact of 3-

dimensional Euclidean space that any two planes 

through a single point must intersect in a whole line. 

Moreover that line will be parallel to the plane that 

contains the two lines. 

 

Projective point      

that does not 

correspond to an 

ordinary point on 

the ‘canvas’. 

Projective line 

that corresponds to 

an ordinary line on 

the ‘canvas’. 

canvas 
eye 
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 Just open this book and hold two consecutive 

pages so that the edges are parallel. These pages will 

intersect in a line that runs along the spine of the book. 

 

 

 

 

 

 

 

 

 This ordinary line in 3-dimensional space, being 

parallel to the canvas, will not intersect the canvas and 

so will not correspond to any ordinary point on the 

‘canvas’. So we can see that, while most of the 

projective points (lines through the eye) will 

correspond to ordinary points on the ‘canvas’, and all 

but one of the projective lines (planes through the eye) 

will correspond to ordinary lines on the ‘canvas’, we 

have here a model of the Projective Plane. The ideal 

projective line is the plane through the eye that is 

parallel to the canvas and the ideal projective points are 

the lines through the eye on this plane. 

 

 But once the canvas is removed the distinction 

between ordinary and ideal is removed. The Projective 

Plane can be considered as a single point O, all lines 

through O (the projective points) and all planes through 

O (the projective lines). This model looks rather like a 

porcupine. (The following picture should be viewed in 

projective lines that 

correspond to 

parallel lines on the 

‘canvas’.  
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3 dimensions with lines pointing in and out of the 

page.) 

 

 

 

 

 

 

 

§5.5. Can We Draw The Projective 

Plane on Paper? 
 There’s a rather clever way of drawing the 

Projective Plane on a piece of paper. Let’s begin by 

drawing the surface of a cylinder. The usual picture is 

something like this. 

 

 

 

 

 

 

 That’s not a bad picture for those who can 

visualise 3 dimensions, but imagine it from the 

perspective of a tiny microbe moving around the 

surface, with no concept of up and down. Locally it 

looks no different to the Euclidean plane. A microbe 

who’s lived on a flat piece of paper will probably notice 

no difference when it’s transported to the surface of a 

cylinder.  Until, that is, it goes on a long journey and 

circumnavigates the cylinder. 
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 “That’s strange,” it might say to itself, “I 

travelled in a straight line and came back to where I 

started. That never happened on the sheet of paper.” It 

might decide to draw a map of the cylinder as follows: 

 

 

 

 

 

  

 What this is supposed to mean is that a cylinder 

is basically a rectangle except that if you get to the 

right-hand side you are spontaneously transported to 

the left-hand side. The left and right are to be 

considered the same. 

 

 Indeed if you were to cut out the rectangle and 

bend it to make the left-hand and right-hand sides the 

same, you’d have a cylinder in 3 dimensions. 

 

 But if the rectangle was sufficiently long in 

relation to its width you could give it a half twist before 

joining the edges and you’d have a totally different 

surface called the Möbius Band. So perhaps we should 

add some arrows to our picture. 

 

 

 

 

 

A A 

A A 
Möbius 

  Band A A Cylinder 
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 Now what do you think that this shape might be? 

 

 

  

 

 

 

 

 

If you have played lots of computer games you 

might recognise this as a screen with ‘wraparound’. If 

you move off to the right you’re spontaneously 

transported to the corresponding position on the left 

edge and if you go off the top you come back to the 

bottom. 

 

A microbe used to crawling around a sheet of 

postage stamps might think that this is where it was 

because if it goes off at the right hand edge it may 

conclude, not that it has been transported to the left, but 

rather it’s at the left-hand edge of another postage 

stamp identical to the one it has just left. 

 

But can we wrap it up into a recognisable shape 

in 3 dimensions? First we can join up the two edges 

marked B into a cylinder. 

 

 

 

Now here is where we must go a little 

topological. If we stretch the cylinder so that it 

A A ? 

B 

B 

A A 
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becomes a long hose the ends of this hose will be 

circles, each marked with the letter A. If we bring these 

ends together we’ll find that the arrows will be going 

the same way so that we can join the edges to make … 

a hose with the ends joined! 

 

 

 

 

 

 

 

But what shape is that? Well if we lay the hose 

flat on the ground into a nice circle we discover that 

what we have is a rather distended doughnut. Actually 

in some countries doughnuts are not doughnut shaped 

so perhaps we’d better give the shape its correct 

mathematical name – the ‘torus’. 

 

 The two pictures we have so far of the Projective 

Plane are quite unsatisfactory. The first was not a true 

picture and in the second we had to call lines points and 

planes lines. Isn’t there an honest-to-goodness picture 

where points are points and lines are lines? 

 

 Suppose we take our porcupine 

model of the Projective plane where 

the projective points are really lines 

through a single point. 

 

A 
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 Now enclose this model in a sphere whose centre 

is that point. Each of our lines will cut the sphere in 

exactly two points. 

 

 

 

 

 

 

 So now our projective points consist of pairs of 

antipodal points, that is, diametrically opposite points. 

Each such pair of points has to be considered as a single 

projective point.  Not perfect, but at least a step up from 

having to consider a whole line as a single point. 

 

 But we can cut this sphere in two. With each pair 

of points one will be in the ‘northern’ hemisphere and 

the other in the ‘southern’ – with the exception of the 

points actually on the equator. These will still be pairs 

of points representing single ones. 

 

 

 

 

 

We can flatten the hemisphere so that it becomes 

a circle. Interior points represent projective points but 

on the perimeter we have to have pairs of opposite 

points representing single projective points. 
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Finally we can bend this surface so that it 

becomes a rectangle. To represent the fact that pairs of 

opposite points are to be considered as single projective 

ones we can place arrows and labels. 

  

 

 

 

 

So here we have a 2-dimensional picture of the 

Projective Plane. Can you imagine it now? I doubt it. 

This business of having to consider pairs of points is 

still there and while mathematically it’s quite sound it’s 

not the sort of picture we might have hoped for. We 

could join up the A’s but that would make a Möbius 

Band and there would be no way of joining up the B’s 

– not in 3-dimensional space at least. 

 

 We’re in a similar position to the disembodied 

angel who’s highly intelligent but has no concept of 

space. We want to imagine the unimaginable, but we 

can’t. Still, we can do lots of things with the Projective 

Plane. We can even prove theorems about it. 

 

A A 

B 

B 

Projective 

    plane 
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But who’s interested in proving theorems about 

something that’s totally imaginary? It sounds like 

someone writing a book about the biology of a 

mermaid! The amazing thing in mathematics is that 

there are problems about our real world that can only 

be solved by going outside it. There are facts about 

ordinary real numbers that can only be proved by 

temporarily going out among complex numbers. There 

are facts about the Euclidean plane that are best proved 

by temporarily considering the Projective Plane. There 

are problems about our familiar 3 dimensional world 

that we couldn’t solve if we remained within 3-

dimensions. 

So the Projective Plane is a valuable 

mathematical space. But can we accurately imagine 

what the Projective Plane looks like? Not on this side 

of heaven! The Projective Plane is one of the many 

unimaginables in mathematics. 
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PUZZLE: GAS, WATER 

AND ELECTRICTY 
 

Remember the Utilities Puzzle in chapter 1. We 

proved there that it’s impossible. Your challenge here 

is to solve it with modified rules. Take a strip of clear 

plastic − the sort you can write on. If you don’t have 

such a strip handy, don’t worry. You should be able to 

solve this puzzle in your head, 

Somewhere on this strip mark three points with 

small black circles. These represent the three utilities, 

a gasworks, a power station and a water reservoir. Now 

mark three more points with small squares. These 

represent three houses. These six buildings are 

supposed to be embedded inside the strip. You can 

repeat the marks on the other side if you wish but since 

you can see them from both sides it doesn’t matter. The 

six buildings can be located anywhere you like. Just 

don’t put them too close together or you’ll have trouble 

drawing the lines between them. 

Now each house has to receive gas, water and 

electricity by means of pipes and wires so your task is 

to draw lines from each of the round dots to each of the 

square ones. But here’s the catch. Because this is 

essentially a 2-dimensional puzzle you must ensure that 

pipes and wires don’t cross each other. Remember that, 

like the buildings themselves, the pipes and wires are 

supposed to be embedded inside the strip so it’s no 
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good having a pipe on one side crossing over a wire on 

the other. 

 

 

 

 

 

 

 You’ll find that the puzzle is no more possible 

than it was on a sheet of paper unless you take 

advantage of one extra thing you are allowed to do. 

You are allowed to bend the strip and join the two 

shorter edges together. Pipes or wires are permitted to 

cross this junction, but of course, not each other. 

 

You’ll find the answer at the back of the book. 
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6. THE UNSOLVABLE 
 

§6.1. Are Computers Omnipotent? 
 Is there anything a computer can’t do? Certainly 

we’ve witnessed some amazing developments during 

the eighty or so years computers have been around. Of 

course we can think of some things that computers 

can’t do − yet. But sooner or later ... 

 

 Of course computers can’t solve any problem 

that has no solution. They can’t come up with a proof 

that 1 + 1 = 3, or a 

procedure which can 

trisect any angle 

exactly by ruler and 

compass. But surely 

if a solution to a 

problem exists a 

computer program 

can be written to find 

it. perhaps not today, or tomorrow, but at some time in 

the future. 

 

 In fact our popular belief in the intellectual 

omniscience of the computer is misplaced. There are 

problems which have solutions but which no computer 

has ever solved, will never solve and can never solve. 

 

 But wait! Aren't we limiting the ingenuity of 

man? People once said that man will never fly in 
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heavier-than air machines, that we will never be able to 

reach the moon, that smallpox will never be eradicated. 

How short-sighted is the person who declares that so 

and so will never happen. Yet that’s what I’m saying. 

Problems exist, problems which have a solution, which 

man can never solve. And not just human man. No 

being whose thought processes are based on the same 

logic as ours can possibly solve these unsolvable 

problems. 

 

§6.2. The Halting Problem 
 There’s a dream that every novice programmer 

has. When a computer program is ‘compiled’ (this just 

means translating it into a form that the computer more 

readily understands) the compiler program generates 

error messages to say that you appear to have left out a 

comma here or you’ve misspelt the name of a variable 

there. 

 

 But despite this, usually the first time a novice 

writes his or her first really complex program the 

computer ‘freezes’. Stupid machine − the keyboard 

doesn’t work, the screen goes on strike. The program 

has to be aborted by using some emergency key-stroke 

combination or switching off the power. Even 

experienced programmers, like the ones who wrote the 

operating system of your computer, can’t avoid having 

bugs that emerge from time to time – hopefully not too 

frequently. 
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 When our own program ‘crashes’ our first 

thought may be to blame the operating system, or the 

hardware. Perhaps my computer has a virus. But soon 

the novice discovers that it wasn’t the computer that 

was at fault, but their program. There was an unforseen 

infinite loop in the program. 

 

 A very obvious case of such an infinite loop is: 

 

10: GO TO 10 

 

which in line 10 sends the machine back to the same 

instruction all the time. 

 

 An equally obvious case of a program failing to 

halt is: 

10: N = 2 

20: LET N = N + 1 

30: IF N < 2 THEN GO TO 10 

 

You might argue that we haven’t got into the sort of 

loop whereby the computer returns to a previous state. 

The value of N never repeats. Nevertheless we include 

such infinite paths as an infinite ‘loop’. 

  

 You’d have to be pretty stupid to write such 

programs, but the problem is that infinite loops can be 

very subtle and hard to find. Take the following 

program. 
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1: LET T = 0 

2: LET N = 0 

3: ADD 1 TO N 

4: ADD 
1

N2  TO T 

5: IF T < 2 GO BACK TO STEP 3 

6: OTHERWISE PRINT THE VALUE 

    OF N AND HALT 

 

We start with T = 0 and N = 0. Then we add 1 to 

N, giving N = 1, and add 
1

N2  to T, giving T = 1. Since 

T is less than 2 we go back to step 3. Then we add 1 to 

N, so that  now N = 2 and add 
1

4
  to T, giving T = 1.25. 

Again T is less than 2 and so we go back to step 3. 

After 10 steps we will have: 

T = 1 + 
1

4
  + 

1

9
  + 

1

16
  + 

1

25
  + 

1

36
  + 

1

49
  + 

1

64
  + 

1

81
 + 

1

100
 

which is about 1.55. 

 

Although T is increasing, it will never be bigger 

than 2. In fact it’s possible to show that T will never be 

bigger than 1.645. So the program will continue 

running forever. It will never halt. The Swiss 

mathematician, Euler, proved that the sum to infinity 

of this series is 2/6 which is 1.644934067 … 

 

 Now consider the following similar program. 
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1: LET T = 0 

2: LET N = 1 

3: ADD 
1

N
  TO T 

4: ADD 1 TO N 

5: IF T < 10 GO BACK TO STEP 3 

6: OTHERWISE PRINT THE VALUE 

     OF N AND HALT 

 

As with the previous program we are adding 

smaller and smaller numbers to the total. It will still be 

running after 10000 steps and it would be easy to think 

that it will go on forever. However, this time the 

program will eventually halt. When N = 12367, the 

value of T will become 10.00004301. 

 

 Merely deciding that if a program hasn’t halted 

after a certain number of steps is no guarantee that it 

will never halt. If we changed the ‘10’ in the above 

program to 1000 the program would, in principle, still 

halt. But if you ran this program on the fastest computer 

in the world it would still be running after a year. You 

might decide that surely it’s going to run forever, but 

in principle it would halt. The only problem is that the 

universe, and all computers within 

it, would have decayed long before 

the program halted. 

 

 Now wouldn’t it be 

wonderful if some piece of software 
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could examine a program, and the data that I plan to 

use as input, to see if it will get into any infinite loops 

before I actually run it. Such a program would examine 

the logical structure of my program and very cleverly 

predict whether or not my program would get itself in 

an infinite loop. 

 

 Such are the very simple specifications for a 

halting predictor program. “I can see how it could 

easily detect obvious 

bugs like 10: GO TO 

10 but I’m not sure 

how it would detect the 

more subtle loops. But 

still I’m sure it could 

be done by some very 

clever programmer.” 

 

 Not so! This dream will be forever a dream. Very 

clever programmers may be able to design something 

that picks up the more obvious loops. But no 

programmer will ever be able to write something that 

can pick up all of them. The reason is that doing so is a 

logical contradiction. 

 

§6.3. Programs 
 A computer program is simply a list of 

instructions which the computer follows to solve a 

problem. Humans are often given instructions and 
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there’s nothing fundamentally different between a 

computer and the human brain in this sense. 

 

 Recipes are simply programs for cooking. 

Knitting instructions use a set of symbolic 

abbreviations which one has to learn. In principle a 

human being armed with unlimited supplies of paper 

and pencils can do anything that a computer can do. It’s 

just that the computer does it very much more quickly 

and accurately. 

 

 We can prove that the halting problem is 

unsolvable using any suitable programming language. 

One can even use the English language, provided we 

make our meaning sufficiently precise. This means you 

can follow this argument without knowing much about 

computers. Basically, all you need to know is that there 

are three ingredients in the computing process − input, 

the program and output. 

 

 

 

We’ll use a shorthand to represent a diagram 

such as the above. We’ll write: 

 

INPUT[PROGRAM] = OUTPUT. 

 

So if TOASTER is a program (list of 

instructions) for using a domestic toaster, we will 

write BREAD[TOASTER] = TOAST to indicate 

PROGRAM OUTPUT INPUT 
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that if the toaster instructions are 

applied to the input BREAD, the 

output is TOAST. 

 

If DOUBLE is the program 

which describes how to double a 

number then 3[DOUBLE] = 6. 

 

 

 

 

 

 

 Often the output of one program becomes the 

input of another. 

 

 

 

 

 

 

So if PROG A and PROG B are two programs 

we’ll write the program that consists of doing PROG 

A and then PROG B as PROG A + PROG B. 

 

 

 

 

We’ll use a shorthand to represent a diagram 

such as the above. We’ll write: 

 

PROG A OUTPUT INPUT PROG B 
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INPUT[PROG A + PROG B] 

                      = INPUT[PROG A][PROG B] 

                      = OUTPUT. 

 

 In the above example we could write the 

process as: 

 

    DOUGH[BAKE + CUT] 

              = DOUGH [BAKE] [CUT] 

              = BREAD [CUT] 

              = SLICED LOAF 

 

 But beware. PROG A + PROG B is not usually 

the same as PROG B + PROG A. The order in which 

you do things usually matters. Try following the steps 

in a recipe in random order! 

 

 If PROG A is the 

operation of putting on your 

socks and PROG B is the 

operation of putting on your 

shoes then PROG A + PROG B is the normal way of 

getting dressed, but PROG B + PROG A, where you 

put the shoes on first and then the socks will be quite 

different. 

 

 Often in mathematics the order of operations is 

not important. You can add numbers in any order or 

multiply them in any order. Adding 3 and then adding 

2 is the same as adding 2 and then adding 3. But this is 

the exception. Most operations in mathematics are 
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sensitive to the order in which we carry them out. For 

example: 

 

7 [DOUBLE] [ADD 1] = 14 [ADD 1] = 15 

 

while 

 

7 [ADD 1] [DOUBLE] = 8 [DOUBLE] = 16. 

 

§6.4. Some Sample Programs 
 The input to a program could be a physical 

object, such as a slice of bread, or a number. But 

programs that can be processed by a computer can’t 

handle input in the form of a slice of bread. When they 

were first built it was thought that computers could 

only accept numbers as their input, but this was wrong. 

 

Fundamentally the input to any computer can 

only be a string of symbols, essentially strings of 0’s 

and 1’s. Such strings can represent numbers. But 

increasingly, as computers developed we began to 

realise that such strings can represent words, or 

pictures, or sounds. 

 

In the examples that follow the input and output 

are strings of symbols. Fundamentally that’s all 

computers can process. The strings might represent 

words, or numbers, or pictures but to the computer 

they’re just meaningless strings to be manipulated 

according to certain rules. 
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 We will assume that whenever our programs 

write something as output they write it on the same line 

as the input, coming immediately after it, and so the 

output includes the inpu, though often the program will 

explicitly instruct you to erase the input. And when the 

program runs out of things to do, it halts. 

 

 Although, for a real computer, the strings are 

strings of 0’s and 1’s, we’ll use strings of letters of the 

alphabet. This will make it more interesting, and easier 

to understand, Our first program is called REVERSE. 

Very simply, it reverses the order of the letters in a 

string. The instructions that make up this program are 

as follows: 

 

REVERSE 

1. Write input 

backwards. 

 

2. Erase input. 

 

 So MESSAGE[REVERSE] = EGASSEM. 

 

A palindrome is a string which reads the same 

forward as backwards, like PUP so palindrome;s are 

those strings that REVERSE doesn’t alter. 

 

One of the most famous palindromes of all is 

what Napoleon is supposed to have said: 
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ABLE WAS I ERE I SAW ELBA. Another famous 

palindrome, this time without the spaces, is 

AMANAPLANACANALPANAMA. 

 

 Reversing a message twice of course brings the 

message back to the way it was. Thus we can write: 

MESSAGE[REVERSE][REVERSE] = 

MESSAGE. 

 

************************************* 

 

 COUNT is a program which counts the number 

of symbols in a string. 

 

COUNT 

1. Count the symbols in the 

input. 

 

2. Write this number in 

words. 

 

3. Erase input. 

 

 Carefully examine the following examples and 

convince yourself that the output claimed is the correct 

one. 

 

MESSAGE[COUNT] = SEVEN because MESSAGE 

has 7 letters. 

 

MESSAGE[REVERSE][COUNT] = 
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MESSAGE[REVERSE][COUNT] = 

                              EGASSEM[COUNT] = SEVEN 

 

MESSAGE[COUNT][REVERSE] = 

                                SEVEN[REVERSE] = NEVES 

 

MESSAGE[COUNT][COUNT][COUNT] 

                                 = SEVEN[COUNT][COUNT] 

                                         = FIVE[SSAGECOUNT] 

                                                                     = FOUR 

 

The first COUNT counts the number of letters in 

MESSAGE and the output is SEVEN. The second 

COUNT counts the number of letters in SEVEN, which 

is FIVE. The third COUNT counts the number of 

letters in FIVE and the output is FOUR. 

 

In fact, if you start with any string and repeatedly 

apply the program COUNT, eventually you will reach 

FOUR. Why? 

 

************************************* 

 

The next program doesn’t erase the input. Instead it 

makes a second copy of the input. 

 

REPEAT 

1. Write “+”. 

 

2. Copy input. 
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MESSAGE[REPEAT] = MESSAGE+MESSAGE 

 

BOO [REPEAT] [REPEAT] = 

                                            BOO+BOO [REPEAT] 

                                          BOO+BOO+BOO+BOO 

 

MESSAGE[COUNT][REPEAT] =  

                   SEVEN[REPEAT] = SEVEN+SEVEN 

 

MESSAGE[REPEAT][COUNT] 

= MESSAGE+MESSAGE[COUNT] = FIFTEEN. 

 

************************************* 

 

 The next program doesn’t do 

much except halt. It does throw out 

an exclamation mark just to prove 

it’s been run. 

 

HALT 

1. Write “!”. 

 

HELP[HALT] = HELP! 

 

************************************* 

 

Now for a program which 

deliberately gets into an infinite loop. 
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LOOP 

1. Copy the last 

letter of the 

input. 

 

2. Go to step 1. 

 

AGH[LOOP] = AGHHHHHHHHHHHHHHH....... 

 

There’s no real output because the program 

never halts. This program will loop, no matter what the 

input is. 

 

************************************* 

The next program is more discriminating. In fact 

it will loop, but only if it is told to halt. 

 

DISOBEY 

1. If input = LOOP then 

HALT. 

 

2. If input = HALT then 

LOOP. 

 

3. Otherwise do nothing. 

 

 Of course DISOBEY doesn’t really disobey its 

instructions. It only appears to do so. 

 

LOOP[DISOBEY] = LOOP! 
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The machine actually halts after printing the 

exclamation mark. 

 

HALT[DISOBEY] = HALTTTTTTTTTTTTT........ 

This time it doesn’t halt. For any other input nothing 

happens, except for halting. 

 

STAY[DISOBEY] = STAY. 

 

************************************* 

 The last of our examples here combines HALT 

and LOOP with COUNT. 

 

MAYBE 

1. If the number of symbols in the input is even then 

HALT. 

 

2. Otherwise LOOP. 

 

NO[MAYBE] = NO! 

 

YES[MAYBE] = YESSSSSSSSS............ 

 

ANYTHING[REPEAT][MAYBE] 

          = ANYTHING+ANYTHING[MAYBE] 

          = ANYTHING+ANYTHINGGGGGG....   

 

This is because ANYTHING+ANYTHING has odd 

length. 
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NO[MAYBE][MAYBE] 

          = NO![MAYBE] 

          = NO!!!!!!!!!!!!......... 

Since NO has even length, NO[MAYBE] = NO! 

Since NO! has odd length, NO![MAYBE] = 

NO!!!!!!!!!!!!......... 

 

§6.5. Cannibalism 
 For convenience let’s assemble all the programs 

we’ve discussed. 

 
REVERSE 

1. Write the 

input 

backwards. 

 

2. Erase 

input. 

COUNT 

1. Count the 

symbols in the 

input. 

2. Write this 

number in 

words. 

3. Erase input. 

REPEAT 

1. Write +. 

2. Copy 

input. 

HALT 

1. Write !. 

 

 

LOOP 

1. Copy the 

last letter of 

the input. 

2. Go to step 1. 

DISOBEY 

1. If input = LOOP 

then HALT. 

2. If input = HALT 

then LOOP. 

3. Otherwise just 

halt. 

MAYBE 

1. If COUNTinput 

is even then STOP. 

2. Otherwise LOOP. 

 

 Perhaps you may be thinking that it’s confusing 

writing both programs and their input/output data with 

capital letters. Wouldn’t it be better to use lower case 

for data and capitals for programs? The reason is that 

programs can be considered as data for other programs. 
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A compiler for a programming language is a very 

complicated program into which you feed a program to 

convert it to a form which is convenient for the 

computer. It’s not uncommon for compilers to be 

written in the same language as the programs they’re 

designed to compile. So you could feed a compiler into 

a second copy of itself! 

 

 Normally when feeding a program to itself we’d 

do this with the complete list of all the instructions − 

not just the name of the program.  But for simplicity in 

this discussion let’s just work with the names. Let’s 

take each of our seven programs in turn and work out 

what would happen if their name was used as their own 

input. 

 

REVERSE[REVERSE] = ESREVER 

 

COUNT[COUNT] = FIVE 

 

REPEAT[REPEAT] = REPEAT+REPEAT 

 

HALT[HALT] = HALT! 

 

LOOP[LOOP] = LOOPPPPPPPPPP............. 

 

DISOBEY[DISOBEY] = DISOBEY 

 

MAYBE[MAYBE] = MAYBEEEEEEE.......... 
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§6.6. Predicting Loopiness 
 We now come to a program which doesn’t exist, 

even though the following description suggests that it 

might. 

 

PREDICT 

1. If the input has the form data+program and 

the program would halt given that data as 

input, then erase the input, write HALT and 

halt. 

 

2. If the input has the form data+program and 

the program would never halt given that data 

as input, then erase the input, write LOOP 

and halt. 

 

3. If the input doesn’t have the form 

data+program then erase everything and 

write ?. 

 

 Although we’ve listed what 

we’d like the program to do we 

haven’t said how it should 

decide whether the program 

would halt given that data as 

input. Of course the fact that we 

can’t think how to do it doesn’t of itself make 

PREDICT an . impossibility. That is something we’ve 

yet to prove. But just suppose for the moment that such 

a PREDICT existed. 
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MESSAGE+COUNT[PREDICT] = HALT 

because MESSAGE[COUNT] = SEVEN, and so 

stops. 

 

LOOP[PREDICT] = ? 

because the input doesn’t have the required form with 

a “+” separating two parts. 

 

MESSAGE+LOOP[PREDICT] = LOOP 

because MESSAGE[LOOP] = MESSAGEEEEEE...., 

going into an infinite loop. 

 

YES+MAYBE[PREDICT] = LOOP 

because YES[MAYBE] = YESSSSSSSS........, which 

doesn’t stop. 

 

NO+MAYBE[PREDICT] = HALT 

because NO[MAYBE] = NO! which stops. 

 

YES+NO[PREDICT] = ? 

because although YES+NO has a + separating YES and 

NO, the program NO hasn’t been defined. 

 

 Notice that in all these cases our human brain 

was ingenious enough to work out what would happen 

— halt or loop. How did we do it? Did we have a 

systematic procedure? If so, we’re well on the way to 

bringing PREDICT into existence. But no, we 

predicted the behaviour of our programs on an ad hoc 

basis. As we shall see this is the best we can ever hope 

for. 
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Now the specifications for PREDICT include the 

requirement that it always give an answer. So 

PROGRAM+DATA[PREDICT] will always be either 

HALT or LOOP. 

 

§6.7. Cannibal Programs 
 We’ll call a 

program a cannibal if it 

halts when fed a copy of 

itself as input.  Let’s see 

how many cannibals 

we’ve bred. 

 

REVERSE[REVERSE] 

= ESREVER 

This halts, so REVERSE is a cannibal. 

 

COUNT[COUNT] = FIVE 

This halts. It, too, is a cannibal. 

 

REPEAT[REPEAT] = REPEAT+REPEAT 

 

HALT[HALT] = HALT! 

 

Both REPEAT and HALT are cannibals. 

 

DISOBEY[DISOBEY] = DISOBEY 

Although DISOBEY will sometimes loop forever (if 

the input is HALT), when fed its own description it 

halts and so it too is a cannibal. 
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LOOP[LOOP] = LOOPPPPPPP …………. 

 

MAYBE[MAYBE] = MAYBEEEEE ……… 

 

These are not cannibals because they loop when fed 

their own description. 

 

§6.8. The Final Showdown 
 We’re now going to build our final program. I 

call it MEPH, short for MEPHISTOPHELES. In the 

description that follows THIS represents any possible 

input and THAT represents any valid program. 

 

Now to do this we’ll need to assume that a 

program called PREDICT, as described above, does 

exist. If it’s fed some data of the form THIS+THAT it 

assumes that THIS is data and THAT is a program. It 

then works in some clever way whether the program 

that we are calling THAT would halt, if given THIS as 

input, and prints out HALT or LOOP accordingly. 

 

If the input doesn’t have the right format, or if 

THAT is not in our list of programs, then it halts with 

? as output. 

 

Now of course it can’t do this by running the 

program THAT, starting with input THIS, because if 

THAT would never halt if given this input then the 

PREDICT program would never reach a final answer. 
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In a world where some clocks could go forever 

you could never predict that a given clock will never 

stop just by waiting for it to stop. 

 

If some humans were immortal, and others 

weren’t, you couldn’t decide who was which by 

reading the death notices in the newspaper. The fact 

that a name doesn’t appear for over a thousand years 

(of course we’re assuming that all deaths are reported 

in the death notices) might mean that the person is 

really an immortal or simply that he’s a very long living 

mortal. Computer programs are the same. 

 

If PREDICT is going to exist it will have to be 

exceedingly cunning and examine the structure of the 

program whose behaviour it is trying to predict. And is 

it impossible that a clever programmer might one day 

be able to do it? Frankly, yes, it is impossible. We will 

prove that it is impossible. 

 

 MEPH is built up from the 

programs that we’ve constructed, 

which certainly do exist, together 

with the one we have merely 

described, PREDICT. If things 

go wrong, as they will, it will 

mean that PREDICT doesn’t 

really exist. 
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MEPH 

1. REPEAT. 

 

2. PREDICT. 

 

3. DISOBEY 

 Let’s check out MEPH with certain inputs. 

 

THIS [MEPH] 

          = THIS [REPEAT] [PREDICT] [DISOBEY] 

          = THIS+THIS [PREDICT] [DISOBEY] 

          = ? [DISOBEY] 

          = ? 

 

Here THIS is not representing arbitrary input, 

but the specific four letter word. Since we have not 

defined a program called THIS, PREDICT simply 

prints ? and halts. So unless the input to MEPH is a 

valid program the output will simply be ? 

 

DOUBLE [MEPH] 

= DOUBLE [REPEAT] [PREDICT] [DISOBEY] 

= DOUBLE+DOUBLE [PREDICT] [DISOBEY] 

= HALT [DISOBEY] 

= HALT [LOOP] 

= HALTTTTTT ….. 

 

LOOP [MEPH] 

= LOOP [REPEAT] [PREDICT] [DISOBEY] 

= LOOP+LOOP [PREDICT] [DISOBEY] 

= LOOP [DISOBEY] 
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= LOOP [HALT] 

= LOOP! 

 

Since LOOP [LOOP] = LOOPPPPPPP …………… 

PREDICT will detect this and merely print out LOOP. 

Then DISOBEY will run the HALT program.  

 

 The big question we are now going to ask is this: 

 

IS MEPH A CANNIBAL? 

 

Of course the answer has to be either “yes” or 

“no”. Let’s examine each possibility in turn. The logic 

of the argument requires a little tenacity to follow. Just 

hang in there and follow it slowly, step by step. 

 

CASE 1: Suppose MEPH is a cannibal. 

What does that mean? It means that MEPH will halt if 

it feeds upon itself, that is: 

 

Now MEPH[MEPH] 

= MEPH[REPEAT+PREDICT+DISOBEY] 

= MEPH+MEPH[PREDICT][DISOBEY] 

= HALT[DISOBEY] 

= HALTTTTTTTT ………….. 

 

MEPHISTOPHELES+MEPHISTOPHELES[PRE

DICT] [DISOBEY] 

    = HALT [DISOBEY] 

    = HALT!!!!!! … 
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But this says that MEPH doesn’t halt when fed its own 

description, contradicting our assumption for this case. 

 

CASE 2: Suppose MEPH is not a cannibal, that is 

MEPH+MEPH[PREDICT] = LOOP. 

 

Now MEPH [MEPH] 

= MEPH [REPEAT][PREDICT][DISOBEY] 

   = MEPH+MEPH [PREDICT] [DISOBEY] 

   = LOOP [DISOBEY] 

   = HALT 

 

But this says that MEPH does halt when fed its own 

description. Again this contradicts our assumption. 

 

 Only two possibilities and neither of them true. 

Each alternative leads to a contradiction. We’re in a 

maze and there’s no way out except the door by which 

we came in. Everything we did was conditional on our 

assumption that a program satisfying the specifications 

of PREDICT can exist. Therefore it cannot! The 

halting problem is unsolvable! 
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INTERLUDE: PLAY 
“It’s Got To Stop Sometime” 

 

Scene: A classroom with a long, wide blackboard at 

the front. The professor is standing at the front, asking 

for volunteers. 

 

Prof: Come on now, I need five volunteers to be 

“people programs”.  All you need to do is to hold up 

one of these cards and, when I say, you just perform the 

instructions on the card to whatever is written on the 

board. 

 

Noel: I’ll have a go but I’m not very good at this sort 

of thing.  I’m sure I’ll get it all back-to-front. 

 

Prof:  That’s exactly what I want you to do.  Your 

program is called REVERSE. 

 

He hands Noel a card on which is written the words: 

 

REVERSE 

Reverse what’s on the board. 

 

Now whenever I call on you, all you have to do is to 

rewrite whatever is on the board backwards. 

 

Peter:  If it’s as easy as that then I’m your man and as 

my mum always says if you want someone to do a job 
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properly and not give up half-way through then ask me 

because I’m your man and as my mum always says ... 

 

Prof: I’m sure you are, Peter.  Your program is called 

REPEAT. 

 

He hands him a second card bearing the instruction: 

 

 

 

 

 

 

The Bubble Twins: (in chorus) We’d like to help too, 

but only if we can do it together. 

 

Prof: Oh, then you'll like your job. 

 

He gives June Bubble a card on which is written: 

 

 

 

 

 

 

When I call on you, all you have to do is to make a 

second copy of whatever appears on the blackboard. 

Jane: (to her sister) Ooh, I’ll do the copying because 

I’ve got the steadier hand.  You can hold up the 

instructions in case I forget them. 

 

REPEAT 

While what is written on the 

board ends in “T” put 

another “T” at the end of it. 

DOUBLE 

Make a second copy of 

what’s on the board, 

separated by a space 
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Prof: Right, let’s practise those three programs. 

 

Mary: What about me?  I knew you'd forget me.  It's 

just not fair! 

 

Prof: You'll get your chance, Miss Contrary, I’ve got 

just the job for you.  But we’ll just practice these first 

three.  Now when I call out the name of your program 

you have to perform the instructions on your card to 

whatever is on the blackboard.  If I say REVERSE 

that's your cue, Leon. 

 

Noel:  Do you mean me? 

 

Prof: Sorry, Noel, yes it's you I mean.  And if I say 

REPEAT its over to you Peter.  And your cue girls is 

DOUBLE. 

 

He writes the letters RAH on the board. 

 

 OK it's DOUBLE first. 

 

The Bubble sisters write a second RAH next to the first 

to get RAH RAH. 

 

Now REVERSE. 

 

Noel rubs out the message RAH RAH and replaces it 

with HAR HAR. 

 

And DOUBLE again. 
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The message now becomes HAR HAR HAR HAR. 

 

And finally REPEAT. 

 

Peter was about to start tacking a row of R's on the end 

of the data but the Prof caught him just in time. 

 

No Pete. Your instructions are to add T's and only when 

what is already there ends in T.  When it ends in 

anything else you do nothing. 

 

Peter, somewhat disappointed, sits down again. 

 

Now we’ll try another one. 

 

He cleans the board and writes the word EXIT. 

 

REVERSE. 

 

Noel changes EXIT into TIXE. 

 

Peter: Isn’t ENTRANCE the reverse of EXIT? 

Prof: No Pete, Noel’s right.  I said REVERSE, not 

OPPOSITE.  OK, now DOUBLE. 

 

Jane Bubble adds a second TIXE. 

 

REVERSE 

 

Noel replaces the TIXE TIXE with EXIT EXIT. 
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And now REPEAT. 

 

Peter excitedly writes T after T, getting EXIT 

EXITTTTTTTTTTTTTTT...... until he runs out of 

blackboard.  The Prof has to restrain him from 

continuing across the wall. 

 

Mary: That’s stupid!  Whenever Pete takes off nobody 

else can follow him. 

 

Prof: No, Mary, its not stupid.  It’s just what happens 

when a computer program crashes because it gets into 

a loop. 

 

Mary: Well it’s stupid ever to get into a loop.  The 

computer should be clever enough to know that it’s 

being told to get into a never-ending loop and spit out 

the offending program. 

 

Prof: But Mary, it’s not always so easy to ensure that 

a program will go on forever. 

 

Mary: ‘Course it is!  Any fool could see what was 

going to happen when Pete took over.  A clever 

computer would be able to examine any programs it 

had to run and refuse any which would make it crash. 

 

Prof: But that would need another program to work out 

what would happen. 
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Mary: So what! It might be a complicated program but 

I'm sure someone smart like Tim could come up with 

one. You just get Tim's program to look at the one 

you're going to run and if it’s OK it rings a bell and if 

it would loop forever it rings a buzzer. Then you'd 

know not to let the computer run any program that sets 

off the buzzer. 

 

Prof: But this program would have to be able to work 

on every possible program. 

 

Mary: Sure, and what’s wrong with that? 

 

Prof: Well, it would even have to be able to work on 

itself. 

 

Mary: Well any dum dum can see that Tim's program 

would always halt so if you ran it on itself you'd get the 

bell, of course.  Now when are you going to give me 

my program, or had you forgotten? 

 

Prof: OK Mary Contrary, I’ve got just the program for 

you. It’s called DISOBEY. 

 

He gives her a card with the following instructions: 

 

 

 

 

 

DISOBEY 

If what’s written on the board 

is HALT then REPEAT. 

If it is LOOP then 

REVERSE. 

Otherwise print “?” 
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Mary: But that’s silly. If I’m told to HALT I go on 

forever writing HALTTTTTTT....... 

and if, for example, I’m told LOOP, I write POOL and 

then halt.  I’ll always be doing the opposite to what I’m 

told. 

 

Prof:  That's why it’s called DISOBEY, Miss 

Contrary! Let’s try it out. 

 

He writes POTS on the board. 

 

 Now REVERSE. 

 

Noel changes it to STOP. 

 

And now DISOBEY. 

 

Mary:  Well the data isn’t HALT so I do the 

“otherwise” bit.  That means getting POTS again. 

 

She picks up the duster but the professor gently 

restrains her. 

 

What’s the matter, I’ve got to do a REVERSE, don't I? 

 

Prof: Not you, your job is to activate Leon as a 

subroutine.  He does the actual reversing. 

 

Mary: Oh, all right then.  Go on Noel. (I suppose that’s 

who you meant.) 
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Noel reverses LOOP and once again the word POOL 

is written on the board. 

 

Prof: Now again. 

 

He cleans the board and writes HALT. 

 

OK Mary DISOBEY. 

 

Mary gives Peter a hard thump and Peter starts writing 

dozens of T’s until the Professor gives Peter a nudge to 

break him out of his infinite loop. 

 

Now has it ever occurred to you that a program can be 

made to operate on itself? 

 

Tim: Well I suppose I could write a program called 

COUNT which counts the number of words in a piece 

of text and I could run it on a copy of the COUNT 

program itself. 

 

Prof: Exactly. So June, if DOUBLE acted upon itself, 

what would happen? 

 

June: DOUBLE DOUBLE toil and trouble – well just 

DOUBLE DOUBLE I suppose. 

 

Prof: And, Leon, what if you REVERSE  REVERSE? 

 

Noel: You’d get ESREVER. 
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Prof: Pete, would you mind doing REPEAT on 

REPEAT. 

 

Peter: What do you mean? 

 

Prof: I mean write REPEAT on the board as your data 

and carry out the REPEAT program on it. 

 

Peter writes REPEAT on the board and then, after 

scratching his head for a minute, he turns it into 

REPEATTTTTTTTTTTTTTTTTT...... 

 

Prof: So if DOUBLE acts upon itself it will halt.  The 

same is true of REVERSE. But if REPEAT acts on its 

own description as data it will never halt. 

 

Jane: It’s just like it gets indigestion. It can’t digest a 

copy of itself. 

 

Mary: Sounds like a cannibal. What a positively 

disgusting idea! 

 

Prof: That’s a good analogy. How about if we call a 

program a “cannibal” if it halts when it feeds on itself.  

So DOUBLE and REVERSE are cannibals. But 

REPEAT isn’t. As Jane says, it gets indigestion if it 

tries to eat a copy of itself. What about DISOBEY 

Mary? 

 

Mary: DISOBEY isn’t HALT so once again I do the 

“otherwise”. Go on Noel, REVERSE. 
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And Noel proceeds to turn DISOBEY into YEBOSID. 

 

Prof: So DISOBEY is a cannibal program. 

Now Tim, the last program is yours. It’s called 

PREDICT. 

 

Tim: I knew you'd say something like that. You’re 

going to tell me that my program predicts whether or 

not any program will halt, or whether it will go into an 

infinite loop. 

 

Prof: Exactly, and because the answer will depend on 

what data it’s given it needs to be given the program 

plus the data. 

 

He hands Tim the last card with the program: 

 

PREDICT 

If the program will halt when given the 

data, print out HALT 

but if the program will loop, print out 

LOOP 

 

Noel: That’s not very difficult. All Tim’s program has 

to do is just run the given program and if it halts then it 

prints out HALT and if it doesn’t halt ... 

 

Prof: ... then you’d never be able to break into it to 

print out the message LOOP. 

 



 221 

Peter: Well can’t you just break it out of its loop if it 

seems to be going on too long? 

 

Prof: How long is too long? A program might take a 

very long time and still halt. Even if you waited a 

hundred years you wouldn’t know for certain that it’s 

not going to halt some time in the future. 

 

Noel:  Well how’s Tim going to do it? 

 

Prof: He can’t. It’s impossible. 

 

Mary: That’s rubbish. Tim’s a computer whiz. And 

even if Tim can’t, someone will one day. It makes me 

mad when people say that something is impossible just 

because they're not clever enough to do it themselves! 

Someone clever can examine the program and work out 

whether it will halt, without actually running it. 

 

Prof: Well, we’re supposing for the sake of argument 

that Tim has done it and PREDICT is that program.  

Let’s try it out. 

 

He writes the word TEST followed by the word 

DOUBLE. 

 

Prof: OK Tim, PREDICT. 

 

Tim: Well it’s obvious that if you ran the program 

DOUBLE on the TEST data you're just going to get 

TEST TEST. 
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Prof: So, carry out your program. 

 

Tim: If I ran DOUBLE on TEST the program would 

halt so I write the word HALT. 

 

He erases TEST DOUBLE and replaces it by HALT. 

The Prof now writes REPEAT to the right of HALT to 

get HALT REPEAT. 

 

Right Tim, here’s another example, go ahead and 

PREDICT. 

 

Tim: Clearly I predict that REPEAT will loop in this 

case. 

 

He writes the word LOOP in place of HALT REPEAT. 

 

Prof: Well Tim, is PREDICT a cannibal? Will it halt if 

it feeds upon its own description? 

 

Tim: I guess so. It is supposed to print either HALT or 

LOOP, but in either case it, itself,  has to halt so that 

you can read its answer. 

 

Prof: Now if I was to attach DOUBLE to PREDICT 

you’d get a program which tells you whether or not any 

given program is a cannibal. But I want to give it a 

twist. Here is a program I’ve called MONSTER. 

 



 223 

The professor holds up the last card displaying the four 

words: 

 

 

 

 

 

 

Prof: Do you think MONSTER is a cannibal? 

 

Peter: Well it sounds like a pretty uncivilised, pagan 

program so I guess it is. 

 

Prof: Guessing isn’t good enough. We must have 

certainty. 

 

Jane: Well, one thing’s for certain, either it is a 

cannibal or it isn’t. 

 

Mary: Stupid girl.  Where do you think that inane 

remark will get us? 

 

Prof: Further than you might think.  Let’s follow up 

each possibility in turn. Suppose Pete is right and it is 

a cannibal. Let’s feed MONSTER its own description 

to digest. What happens first? 

 

June: Well first we do DOUBLE and get MONSTER 

MONSTER. 

 

MONSTER 

DOUBLE 

PREDICT 

DISOBEY 
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Tim: Then PREDICT examines the structure of 

MONSTER and decides whether it will halt when it 

feeds on MONSTER. 

 

Noel: And because we’re at the moment assuming that 

it’s a cannibal it will be able to digest its own 

description, so PREDICT will spit out HALT. 

 

Mary: Then I come along and upset the applecart, 

because as soon as I see the word HALT, my 

instructions in DISOBEY tell me to turn this into 

HALTTTTTTTTTTTTTT... 

 

Prof:  Not quite. You have to ask Peter to run the 

program REPEAT. But it amounts to the same thing. 

 

Peter: But that will give MONSTER indigestion. It’ll 

never get to the end. 

 

Mary: So MONSTER is not a cannibal after all. That’s 

dumb. We assumed it was. 

 

Prof: So all that means is that that assumption has to 

be rejected. 

 

Tim: Oh, I see, that contradiction proves that 

MONSTER is not a cannibal. 

 

Prof: Well, as that seems to be the only possibility 

remaining, let us assume that MONSTER is not a 
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cannibal, that is, it will go on for ever if it feeds on a 

copy of itself. 

 

Mary: We don’t need to assume that, we know that. 

 

Prof: So lets follow through MONSTER again as it 

attempts to digest MONSTER. First step gets us 

MONSTER MONSTER. 

 

Tim: Then my PREDICT program interprets this as the 

program MONSTER acting on the data MONSTER 

and PREDICT must predict whether it will halt. 

 

Noel: And since we know that MONSTER is not a 

cannibal, the answer LOOP will come out of the 

PREDICT part of MONSTER. 

 

Mary: And then I come along and DISOBEY, which 

means that since I don’t see the word HALT I simply 

turn the LOOP into a POOL and halt. But that’s dumb 

too because that means that MONSTER is a cannibal. 

It fed upon itself and finished. Didn’t you say that 

MONSTER couldn’t be a cannibal? 

 

Prof: Well we do appear to be in a bit of a fix. If we 

suppose that MONSTER is a cannibal we can prove he 

isn’t and if he isn’t we can prove he is. 

 

Mary: That’s the dumbest thing I ever heard. If he is, 

he isn’t and if he isn’t he is! 
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Prof: So we’ve reached a blank wall again. But 

remember, we’re still making an assumption. 

 

Noel:  What's that? 

 

Prof: Well Tim hasn’t actually got a PREDICT 

program. 

 

Peter: So ... ? 

 

Prof: If ever he, or anyone else for that matter, ever 

came up with a PREDICT program that can decide in 

advance whether or not any given program will halt, 

the contradiction we reached a moment ago must 

inevitably follow. So no such program could ever be 

written. The Halting Problem is insoluble! 

 

Mary: My “Halting Problem” is the fact that this stupid 

lesson seems to be going on forever. Tim, do you 

predict it will ever HALT? 

 

At that moment the end-of-lesson bell was heard. 

 

Tim: Indeed I do. 
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7. THE 

UNCOMPUTABLE 
 

§7.1. Conceptual Models for the 

Computing Process 
 If we want to investigate in detail what 

computers can or cannot do, we need a precise 

conceptual model for the computing process. 

Computers, their operating systems and their 

programming languages can be very complex. But this 

complexity has to do with 

practicality and efficiency, 

not possibility. One can 

use a very primitive 

computing device and still, 

given enough time and 

patience, be able to do 

anything that the most 

advanced ‘state-of-the-art’ 

computer can do. So, in 

setting up a model for 

computability we should 

set up an abstract machine which is as simple as 

possible. 

 

 But what we must insist on, with our conceptual 

model computer, is unlimited memory. Those who 

drive powerful computers with terabytes of memory 
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are still conscious of the limitations placed upon them 

by how much computer memory they have. They’d 

always like more. Having a fixed amount of storage 

places artificial limitations on computability, even with 

something as straightforward as multiplying two whole 

numbers. 

 

 No computer in the world will ever be able to 

multiply any two arbitrarily large numbers. The 

process isn’t difficult, and computers can be 

programmed to do this. But with limited memory, even 

if that limit is huge, we may not even be able to store 

the input, and even if we just managed to store the two 

numbers we may not have any memory left over to 

store the intermediate calculations. Yet we know, in 

principle, how to multiply any two numbers no matter 

how large they are. So we say that the multiplication 

function is computable. The abstract computer that’s 

usually used to explore computability is the Turing 

Machine. 

 

§7.2. Turing Machines 
 So what is a Turing 

Machine? Alan Turing was a 

mathematician who worked in 

Cambridge in the 1940’s. He was 

fascinated by the concept of 

computability. Remember this was 

at a time just before the first actual 

computers were built. His 
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conceptual model of a computing machine was based 

on the English public service. 

 

He imagined a large room filled with clerks. 

These clerks would make marks on a paper tape or 

erase marks with an eraser, according to certain 

instructions. Being clerks in the English public service 

they were not expected to show any initiative – they 

had to simply follow orders. 

 

The paper tape was infinitely long (so avoiding 

any artificial limitations due to limited memory). And 

the tape came in one hatch and out another. Input was 

written on the tape, the tape was pulled through the 

hatch and when the process terminated the tape would 

be pushed out with the output written on it. 

 

 Dispensing with the 

unnecessary imagery of a 

room filled with public 

servants, we can describe 

a Turing Machine as 

having an infinitely long 

paper tape, ruled up into 

squares. A small device runs up and down this tape, 

capable of writing and reading marks on the tape. At 

each moment of time this read/write head is scanning a 

single square. 

 

 There’s only one symbol that can be written onto 

the tape. It doesn't much matter what it is. We’ll 
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represent this mark by the symbol 1. Those squares 

which don’t contain a 1 are said to be blank. 

Throughout the calculation the head writes 1’s or 

erases them. 

 

 Now because of its invisibility, a blank is a 

difficult symbol to represent. For convenience we’ll 

use the symbol 0 to represent a blank. When the 

machine begins, we assume that there are only finitely 

many 1’s on the tape, representing the input data. 

Sometimes we begin with the tape completely blank, 

represented by a two-way infinite sequence of 0’s. 

 

 In addition to this infinite external memory a 

Turing Machine has a finite amount of internal 

memory. There’s a gear wheel that can rotate and it can 

be in any one of a finite number of positions. We call 

these various positions the ‘states’ of the machine. So, 

if the machine has n states, they’re labelled 0, 1, 2, ... , 

n−1. 

 

 At any given moment the machine is in one of its 

states and the head is scanning one of the squares. 

There’s a program, or set of instructions, which 

regulates the behaviour of the machine. Depending on 

the current state of the machine and the symbol being 

scanned, the machine writes to the square, moves either 

left or right one square, and the gear wheel rotates to a 

new state (or perhaps it stays in the same state). Then 

the process starts all over again. 
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 The instructions in a Turing program are written 

in a table. The table has two columns, one labelled 0 

and the other labelled 1. The symbol that the head is 

currently scanning, either a 1 or a blank, that is a 0, 

determines which column we take the next instruction 

from. 

 

 The rows of the table are labelled 0, 1, 2, ... n−1 

and represent the states. The current state of the 

machine determines the row for the next instruction. So 

if the machine is currently in state 3 and the head is 

reading a 1, the next instruction comes from the row 

labelled 3 and the column labelled 1. 

 

 Now what do these instructions look like? 

There’s just one type of instruction, which is why it’s 

so easy to learn the Turing Machine language. Suppose 

that the machine is in state 3, reading a 1 and that the 

instruction in the appropriate cell of the table is 0L5. 

This highly cryptic instruction says “print 0, move left 

and go to state 5”. The symbol on the current square is 

erased (print 0), the read/write head moves one square 

left and the gear wheel rotates to position 5. One step 

in the calculation has just occurred. 

 

 Just two more comments are needed to complete 

the description of the Turing Machine – how does it 

start and how does it stop? The Turing machine always 

begins in state 0. It stops whenever it’s told to go to a 

non-existent state. For an n-state machine, with states 

0, 1, 2, ... , n−1, an instruction which tells the machine 



 232 

to go to state n has the effect of halting the machine, 

indicating that the computation has been completed. 

What appears on the tape at this stage represents the 

output of the machine. So if a machine has 5 states, 

numbered 0, 1, 2, 3, 4 the instruction 1R5 has the effect 

of printing a 1, moving the head one square to the right, 

and then halting. 

 

 This then is the Turing Machine. It’s a wonderful 

tool in theoretical computing science, but it only exists 

in the mind. Nobody has ever built such a machine. 

Infinitely long paper tapes are hard to come by! But 

since it would be highly impractical for practical 

purposes this is no loss. The mind is the appropriate 

place for it. 

 

 That's not to say that Turing Machines haven’t 

been simulated on actual computers. It’s a very easy 

exercise to program an actual computer to act like a 

Turing Machine with a very long tape, which is the 

nearest one can get in reality to the infinitely long tape. 

 

 You may wonder why we need an infinitely long 

tape if, in the course of a finite number of steps between 

starting and halting, only finitely many squares are 

visited. The reason is not that we need infinitely many 

squares. But we do need an arbitrarily large number. 

We may not know in advance how many squares will 

be visited so we have to have infinitely many to be on 

the safe side. We want our uncomputability results to 
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be absolute, and not simply because we've run off the 

end of the tape. 

 

 Some descriptions of Turing Machines use finite 

tapes which can be extended if the head is about to fall 

off the end. But since the real purpose of these 

machines is conceptual, not practical, we may as well 

have infinitely many squares and be done with it. After 

all, an infinitely long tape is no more difficult to 

imagine than an infinitely long line in geometry or an 

infinite collection of numbers in arithmetic. 

 

§7.3. Turing Programs 
 We’re now ready for our first Turing Machine 

program. This one has 3 states and doesn’t do anything 

particularly useful. 

 

 0 1 

0 1L2 1R1 

1 1L0 0L3 

2 0R2 1R1 

 

 Let’s run this program on our Turing Machine. 

The best way to describe what happens, step by step, is 

to draw a picture of the tape, or at least a portion of it – 

as long as the portion includes all the 1’s on the tape. 

So we can assume that everything to the left or the right 

of the portion that’s shown, is blank. We then mark the 

position of the head and the state of the gear wheel by 

putting the number of the state underneath the square 
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being scanned. Finally, as an extra aid to following 

what is going on, we put the next instruction to be 

performed at the right of the picture. 

 

 Suppose we start the machine with a blank tape. 

Being in state 0, reading a 0, the first instruction is 1L1. 

 

...... 0 0 0 0 0 ...... 1L2 

   0     

 

 Carrying out this instruction writes a 1, moves 

the head one square left, and causes the machine to go 

into state 2. A description of the machine at the end of 

this machine cycle is: 

 

...... 0 0 1 0 0 ...... 0R2 

  2      

 

 After the next step we have: 

 

...... 0 0 1 0 0 ...... 1R1 

   2     

 

 And then: 

 

...... 0 0 1 0 0 ...... 1L0 

    1    

 

 And then: 
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...... 0 0 1 1 0 ...... 1R1 

   0     

 

 And then: 

 

...... 0 0 1 1 0 ...... 0L3 

    1    

 

 And finally: 

 

...... 0 0 1 0 0 ...... halt 

   3     

 

The machine halts in state 3 with a single 1 on the tape. 

 

  Here’s another Turing Machine. 

 

 0 1 

0 0L1 1R0 

1 0R2 1L1 

 

 Suppose we start with the data 11111 on the tape, 

with 0’s to the left and right of these five 1’s, and 

suppose the head starts scanning the left-most 1. The 

first instruction to be obeyed is 1R0. This leaves the 

symbol 1 as it is, but moves right. The machine stays 

in state 0. The second 1 is encountered, and the same 

thing happens. We have a loop, with instruction 1R0 

being performed over and over again, until the first 0 is 

reached to the right of all the 1's. 
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 At this stage the instruction 0L1 is encountered. 

Nothing is changed on the tape, but the head moves left 

and the gear wheel changes to state 1. Now it is the turn 

of 1L1 to be performed over and over, while the head 

moves progressively left and the gear wheel stays in 

state 1. The head returns, past all five 1’s until the 0 to 

their left is reached. The instruction now changes to 

0R3. This moves the head back to where it started, and 

being sent to the non-existent state 3, the machine halts. 

The net effect is to return to exactly the same situation 

as existed at the beginning. 

 

 This machine hasn’t resulted in any useful 

computation, but it has performed a little bit of mildly 

amusing animation, simulating a train which starts at a 

station, goes down the line till it reaches a blank, 

returns, overshoots the station, backs up and finally 

stops at the station. 

 

 The next machine behaves in a fundamentally 

different way to any machine so far. 

 

 0 1 

0 0L1 1R0 

1 0R0 1L1 

 

 A quick examination of the instructions will 

show you that no matter what the initial data is, this 

machine will never halt. There is simply no halting 

instruction in the whole table. 
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The fundamental problem in the Theory of 

Computation is to find a way of deciding whether or 

not a given Turing program will halt when we use 

certain input data. Now we did solve the problem very 

easily in this particular case (no halting instruction). 

We don’t need to run the machine to see that it will 

never halt. But the problem is to devise a method which 

will work in all cases. 

 

 Certainly if, when you scan the instructions in a 

Turing program you find nowhere for it to halt, then 

you can say “it doesn’t halt!” But the problem is that 

the converse doesn’t work. Here’s a program which 

provides a halting instruction in the bottom right hand 

corner.  But, if we start it with a blank tape the blighter 

just ignores it! 

 

 0 1 

0 0R1 0R0 

1 0R1 1L2 

 

 After one step, the machine finds itself in state 1, 

reading 0’s, with the head moving continually to the 

right, for ever and ever. 

 

 If we started the above program with input 

consisting of a finite string of 1’s with the head 

commencing on the one at the left, the behaviour of the 

machine is easy to predict.  It moves to the right, wiping 

out each 1 as it goes until it reaches a 0. By now the 

tape is completely blank and the machine then behaves 
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as before, moving forever to the right. This time the 

only one of the four instructions not to be reached is the 

halting one. 

 

§7.4. A Program For Locating a 1 
 Have you ever run out of petrol on an isolated 

road in the country and had the difficult job of deciding 

whether you should walk back the way you came, or 

walk on. You may remember how far it is back to the 

last town but what if the next town is just around the 

corner? 

 

 There’s an interesting problem like this with 

Turing machines. Suppose you had the usual infinitely 

long tape, and you were told that there is a single 1 on 

the tape – all the other squares are blank. The machine 

starts somewhere, but you don’t know whether the 1 is 

to the left or the right. The problem is to design a 

Turing Machine program that will locate this 1 and halt 

on that square. 

 

 It would be no good going left until you hit the 1 

because the 1 might be to the right and this strategy 

would have you going left forever. Similarly it would 

not do to just go right. The only strategy is to alternately 

search to the left and to the right. Each time you move 

to the left you’ll need to go further than you did last 

time and similarly when you search to the right. 
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 So you might go one square to the right, then 

back to where you started and go one square to the left. 

Then back to where you started and go two squares to 

the right. In this way you alternate between left and 

right searches, and each time your search goes one 

square further than last time. Sooner or later you will 

reach the 1 and you then halt. 

 

 Such a strategy is fairly obvious, but the 

primitive nature of the Turing Machine means that we 

must employ a bit of ingenuity to implement that 

strategy. All blank squares look the same. You would 

need some mechanism of counting so that you knew 

when you had reached the point you had reached 

previously in that direction so that you could go just 

one step further. 

 

 States can be used for counting in Turing 

Machines in a limited way. Each time we move to the 

right we could go to a new state. The problem is that 

every Turing Machine, by definition, has a finite 

number of states and the number of squares we might 

need to move might exceed this. Remember the one 

program has to work in all cases, no matter how far 

away the 1 is from our starting position. 

 

 If you decided to adopt this alternating left/right 

strategy on the long, straight, featureless road across 

the Nullarbor Plains in Australia, you might hit on the 

idea of marking the furthest point you have reached in 

each direction with a chalk mark on the road. You 
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wouldn’t need to mark the starting point, just the 

furthest point in each direction. 

 

 So, you move east and west alternately. When 

moving east you continue till you find the chalk mark, 

erase it, walk a certain distance further and mark the 

road. Then you walk west till you come to the chalk 

mark, erase it, walk a certain distance further west and 

then mark the road. This way you’ll eventually reach a 

petrol station! 

 

 How do we adapt this to the Turing Machine 

problem? A chalk mark would simply be a 1 that we 

write on a blank square. But we have to be careful we 

don’t confuse the 1’s we are writing with the 1 we’re 

looking for. On the Nullarbor we’re not likely to 

confuse a chalk mark with a petrol station, but on a 

paper tape any 1 looks exactly like any other. 

 

 Here’s a solution to the problem. Note that the 

beginning is a little different to the subsequent steps in 

that we have to put down the two 1’s to begin with. 

Note too that if we are just about to write a 1 on a square 

that already has a 1 we know that we’ve found what we 

were looking for. Oh, and being tidy programmers, we 

go back and erase the 1’s we made and halt on the 

located 1, leaving the rest of the tape completely blank. 
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 0 1  

0 1R1 1L7 Put down left marker for the first time 

1 1L2 1L8 Put down right marker 

2 0L2 0L3 Move left - erase left marker 

3 1R4 1R5 Put down left marker in new position 

4 0R4 0R1 Move right – erase right marker 

5 0R5 0L6 Tidy up right marker 

6 0L6 1L7 Return to the found “1” 

7 0R10  Halt on the “1” 

8 0L8 0R9 Tidy up left marker 

9 0R9 1L7 Return to the found “1” 

 

§7.5. The Longest Running Turing 

Machines 
 The Turing Machine Olympics is a great 

occasion. Turing Machines from all round the world 

compete in many events. But as with any Olympics the 

star event is the marathon. Actually the Turing 

Marathon is an endurance race. Speed is a non-issue 

because all Turing machines run at the same speed. The 

gold medal goes to the one which runs longest when 

started with a blank tape. 

 

 Now larger Turing machines have the potential 

for running longer so there are marathon events for 

each size of machine. So the winner in the 20 state 

division will be the 20 state Turing machine that runs 

longest when started with a blank tape. 
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 Imagine the excitement of this great event. 

Countless Turing Machines are all lined up around a 

huge stadium. Each of them is loaded with a blank tape. 

The starting pistol fires and these machines spring into 

action. Heads fly left and right across each infinite tape 

as the machines operate furiously. 

 

 The machines all run at the same speed so that 

after a while each machine has run 1000 steps. By now 

many machines have halted and so are out of the race. 

Attention focuses on those still running. After a time 

there are only a few machines left, each showing no 

sign of tiring. Finally there is just one competitor left, 

and eventually he halts. Or perhaps there are several 

who halt at the same time – they are declared joint 

winners. 

 

 But what if a particular program runs forever? 

It’s easy to write a Turing machine program that 

doesn’t halt when started with a blank tape. Apart from 

tying up the stadium and preventing the next event 

from taking place, it isn’t fair. Programs which loop 

have to be disqualified at the outset. Only those that 

will eventually halt are allowed to compete. The 

stewards have to examine the machines before the race 

begins and disqualify those that will never halt. 

 

 So for each number of states the prize goes to the 

Turing Machine with that number of states that for the 

longest number of steps and eventually halts, when 

started with a blank tape. Of course, since the number 
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of states in a Turing program can be arbitrarily large, 

there are infinitely many programs competing. But 

there are only finitely many in each division because 

there’s only a finite number of ways you can fill out 

any specific table. 

 

 The fact that there are only finitely many 

competitors in each race is important because if there 

were infinitely many the race may still never finish, 

even if each competitor does. Suppose there were 

infinitely many competitors C1, C2, C3, … and that C1 

halted after one step, C2 after 2 steps and so on. Even 

though each competitor eventually halts there would 

never be a stage when they had all halted. But as there 

are only finitely many Turing machines with a given 

number of states this problem never arises. 

 

§7.6. The Busy Beaver 
 When the problem 

we’re about to discuss 

was first described it was 

called the Busy Beaver 

Problem.  Beavers are 

industrious little animals, 

found in North America, 

who chop down small trees with their huge teeth and 

use the timber to construct small dams. The apparent 

tirelessness of the beavers has inspired such phrases as 

“as busy as a beaver” and the thought of Turing 



 244 

Machines “beavering away” suggested the name “Busy 

Beaver Problem”. 

 

 As we’ve seen, with our fanciful Turing 

Marathon Race, for a given number of states, n, there 

are only finitely many n-state machines. Of these some 

will never halt when started with a blank tape and so 

are disqualified. If the remaining ones are run, there 

will eventually be a winner, or at least some joint 

winners. There will be a certain number of steps at 

which these winners finally stop. 

 

 Let's call this number B(n). It’s a function of n in 

that you need to know the value of n before you can 

work out B(n). It’s much like the function f(n) = n2 + 

n, except that we don’t have a neat formula for it. 

 

The Busy Beaver Function 

B(n) is the largest number of steps that an n-state 

Turing Machine can run for, starting with a blank 

tape, and still halt. 

 

The Busy Beaver Problem 

The Busy Beaver Problem is to write a program that 

will calculate the Busy Beaver Function. 

 

 If there was a formula for B(n), even a 

complicated one, it would be a simple matter to write 

such a program. But programs can be written even 

when there isn’t a formula. If there is any systematic 
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procedure for working out B(n) in all cases, one can 

write such a program. In what computer language do 

we want such a program to be written? It doesn't matter 

because any such program, in any computer language, 

can be converted to a Turing program. 

 

 In what format do we want our answer? Do we 

want the B(n) to be written in normal notation, or in 

binary or in some other form. Binary notation is the 

system used for expressing numbers with just with 0’s 

and 1’s and it’s the way numbers are actually stored 

inside a real computer. 

 

 But again it doesn’t matter because it’s a routine 

programming task to convert from one system of 

notation to another. Binary might seem to be one that’s 

very suitable for Turing Machines, but don’t panic if 

you don’t know about binary notation. There’s a much 

simpler system we can use. 

 

§7.7. Unary Notation for Numbers 
 There have been many systems of 

notation for the numbers 1, 2, 3, ... 

The Babylonians had a system based 

on counting in 60's. The Romans had 

their Roman numerals. The Arabic 

system we use is quite efficient. 

Binary is particularly suitable for 

computers. But the simplest system 

of notation is unary. 
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 In unary we represent the number 7 by 1111111.  

This is the system prisoners use to mark off the number 

of days of their imprisonment. It’s a system which is 

also used to score in various sports like cricket. 

Sometimes the strokes are grouped into 5’s or 10’s to 

make them easier to count, but the basic system just has 

1’s. What’s attractive about it is the simplicity of 

adding 1. None of this fuss about carrying 1 that you 

get when you have to add 1 to 99. Just put down an 

extra stroke. 

 

 Of course the unary system would be totally 

impractical. Imagine the date 13-5-21 expressed in 

unary: 

1111111111111-11111-111111111111111111111. 

But we're not concerned with practicalities here, just 

whether or not something is possible. 

 

§7.8. Turing Programs with One or Two 

States 
 We’ll calculate the value of B(1) to illustrate 

what would be needed in a program for calculating the 

Busy Beaver Function. If a Turing Program has just 

one state, the initial state 0, the whole program can be 

written in a table with one row and two columns: 

 0 1 

0   
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 Each of the two cells in this table will contain an 

instruction. In this case there are only eight possible 

instructions: 0L0, 0L1, 0R0, 0R1, 1L0, 1L1, 1R0, 1R1. 

With eight possibilities for each cell, there are 8  8 = 

64 possible Turing Machines. In terms of our story of 

the Turing Marathon, there will be 64 possible entrants 

in the 1-state division. But some of these will be 

disqualified. 

 

 Let’s focus our attention on the first instruction. 

We can sort these 64 programs into eight groups of 

eight according to their first instruction. 

 
A 0 1  B 0 1  C 0 1  D 0 1 

0 0L0   0 0L1   0 0R0   0 0R1  

               

E 0 1  F 0 1  G 0 1  H 0 1 

0 1L0   0 1L1   0 1R0   0 1R1  

 

 Each of these partially completed tables 

represents eight programs corresponding to the eight 

different possibilities for the second instruction. 

 

 Now let’s examine these eight tables in turn. 

Starting with a blank tape the machines in groups A, C, 

E, G will loop. The second instruction will never be 

reached. Machines in group A, for example, move 

continually to the left, leaving the tape blank. Machines 

in group E move continually to the left, leaving behind 

a trail of 1’s. Machines in groups C and G exhibit 

similar behaviour to the right. 
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 The remaining four groups, representing 32 

programs in all, will halt at the very first step. So the 

longest number of steps that a 1-state program can run 

for, starting with a blank tape, and still halt, is 1. Thus 

B(1) = 1. 

 

 It’s much more difficult to calculate B(2). For a 

start there are 12 possible instructions now: 0L0, 0L1, 

0L2, 0R0, 0R1, 0R2, 1L0, 1L1, 1L2, 1R0, 1R1, 1R2. 

And there are now four cells in which to put them. So 

there are 12  12  12  12 such programs in all. That's 

20736 programs to consider. 

 

 I once set this as a problem for a post-graduate 

course on the Theory of Computation. With the help of 

a computer program that they had to write, they 

analysed these cases and concluded that B(2) = 6. No 

2-state Turing machine program will halt after more 

than 6 steps, but there are some 2-state programs that 

halt after exactly 6 steps. They are the joint winners in 

the 2-state division of the Turing Machine Marathon. 

Here is one of them. 

 

 0 1 

0 0L1 1L2 

1 1R0 1L1 

 

 Not only did my students able to come up with 

2-state programs that halted after 6 steps, they also had 

to show, by an analysis of all the others, that any 
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program that was still going after six steps would go on 

forever. 

 

 A two-state analysis was difficult enough so it 

would appear that it would be very difficult to write a 

program that would handle the general case. Very 

difficult, but is it actually impossible? To say that it is 

would seem to limit the ingenuity of man (or woman). 

Yet the ingenuity of the human mind has limits – a 

rather humbling thought. At least we are ingenious 

enough to recognise our own limitations. 

 

 We can never write a program to compute the 

Busy Beaver Function, but at least we can prove that 

we can’t, which is perhaps the next best thing. 

 

 The Busy Beaver Function can never be 

computed. It might be possible to find the values of 

B(3), B(4) and so on, but the methods would be forever 

changing. No one set of ideas can handle all B(n)’s. 

Why not? Read on! 

 

§7.9. Why B(n) is uncomputable 
 The busy-beaver function is uncomputable. That 

is, there is no Turing Machine which computes B(n) for 

all n. Nor could one ever be found. It’s a logical 

impossibility. What’s more, the fact that no such 

Turing Machine can exist means that no program can 

ever be written in any computer language on any 

computer − not now, not ever. 
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 If anyone is ever clever enough to do so, such a 

program can be converted to a Turing Machine and he 

or she will have created a logical impossibility. Our 

whole world of logical reasoning will collapse!  

 

 Our proof will be a proof by contradiction. We 

suppose that there is a Turing program BEAVER 

which computes B(n). That is, if we input the number 

n by writing n 1’s on the tape, the output will be B(n) 

1’s. Both input and output will be in unary notation. 

 

  With this supposedly-existing program, 

together with two other programs that do exist, we 

construct another program. The two auxiliary programs 

are INCREMENT and DOUBLE. 

 

 INCREMENT is a 2-state program that 

computes the function F(n) = n + 1. In unary notation, 

this is very easy to do. We simply put down one extra 

1. 

 

 

 The other auxiliary program is DOUBLE. It’s a 

9-state program that computes the function G(n) = 2n. 

It takes a string of 1’s, representing the input n, and 

joins a second copy onto it, making a string of twice the 

length. This is quite tricky, because after we’ve copied 

a 1 we have to mark it in some way to avoid copying it 

INCREMENT 0 1 

0 1 L 1 1 L 0 

1 0 R 2  
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again. We do this by temporarily changing the 1 to a 0. 

After the head has move across to put down the copy 

and comes back, it can recognise where the 1 came 

from. It then reinstates the 1, moves to the right and 

proceeds to copy the next 1. 

 

 If you have the patience it’s interesting to work 

through this program, say with an input of 3. That is, 

the tape consists of 111 on an otherwise blank tape and 

the head begins on the left-most 1. 

 

 If you can’t be bothered working through it you 

can just accept that such a program is possible. 

 

 

 We now take as many copies of DOUBLE as we 

like and build up a Turing program called OMEGA. 

 

DOUBLE 0 1 

0 0 L 5 0 R 1 

1 0 R 2 1 R 1 

2 1 L 3 1 R 2 

3 0 L 4 1 L 3 

4 1 R 0 1 L 4 

5 0 R 6 1 L 5 

6 0 R 9 0 R 7 

7 1 L 8 1 R 7 

8 0 R 9 1 L 8 
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OMEGA 

INCREMENT 

DOUBLE 

DOUBLE 

.............. 

DOUBLE 

BEAVER 

 

 How many states will this program have? Well, 

that depends on how many copies of DOUBLE we’re 

taking. Suppose we take n copies. Each copy has 9 

states, so that’s 9n states, plus 2 for INCREMENT 

plus however many states this mythical BEAVER has. 

Since we don’t have a BEAVER program, we can’t 

count them, but if BEAVER exists its number of states 

must exist. Let’s suppose there are b states in 

BEAVER. So OMEGA with n DOUBLE’s will have 

9n + b + 2 states. 

 

 Now what will OMEGA do with a blank tape? 

Well, first it will add 1, to get 1, and then it will double 

that n times. At this point there will be 2n 1’s on the 

tape. If n = 4 we’ll have doubled the 1 four times to get 

24 = 16. 

 

 At this stage OMEGA hands over control to 

BEAVER, which will take the 2n as input and proceed 

to compute B(2n). So at the end of the day, starting with 

a blank tape, OMEGA will halt, leaving B(2n) 1’s on 

the tape. 
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.steps because it takes one step to put down each 1. 

Suppose it runs for s steps. Then s is at least as big as 

B(2n). So s  B(2n). 

 

 Now OMEGA is itself a Turing program, with 

9n + b + 2, states, and it halts. So it can’t run longer 

than the maximum for all programs of its size. Hence 

s, the number of steps that OMEGA runs for must be 

less than or equal to B(9n + b + 2), the maximum for 

programs in the same class as OMEGA. This means 

that s  B(9n + b + 2). 

 

 Perhaps you need a breather at this point. We’re 

establishing a number of inequalities which are 

probably more easily considered using symbols. Let’s 

recap. 

 We have: 

s = number of steps that OMEGA (with n doubles) 

runs for 

B(2n) = number of 1’s that OMEGA prints 

B(9n + b + 2) = maximum number of steps that any 

program as big as OMEGA can run for (and still halt). 

 

B(2n)  s 

OMEGA must run for at least as many steps as the 

number of 1’s it prints. 

 

s  B(9n + b + 2) 

B(9n + b + 2) is the maximum for programs in the same 

class as OMEGA 
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Combining these inequalities together we get: 

B(2n)  B(9n + b + 2) 

and the final contradiction is just around the corner. 

 

 Up till now we’ve not been particular about the 

size of  n. Any n would have done. But now we want n 

to be large. How large? Well, we want n to be large 

enough so that 2n is bigger than 9n + b + 2. Unless we 

had a specific value for b we could never say explicitly 

how large we’d need n to be. But 2n grows 

exponentially, and no matter how large b is, eventually 

2n would exceed 9n + b + 2. 

 

 For example if b = 100,000,000 a value of n = 27 

would be large enough. The important thing is not to 

calculate how big n would need to be, but in 

recognising that no matter how big b is, there will 

always be a suitably large value of n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = 9n + b + 2 

m = 2n 

n 

m 
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 OK, so we choose a value of n that makes 2n 

bigger than 9n + b + 2. This will mean that B(2n) is 

bigger than B(9n + b + 2). (Remember the more steps 

available the longer one can make the program run.) 

 

B(2n) > B(9n + b + 2) 

 

 But, and here’s the contradiction, we showed 

above that no matter how big n  is, 

 

B(2n)  B(9n + b + 2). 

 

These two inequalities contradict one another. The only 

way to resolve this contradiction is to deny the only 

unsubstantiated assumption we’ve made — the 

existence of BEAVER. Therefore no such program can 

possibly exist and so the Busy Beaver function is 

uncomputable. For each n there must be a value of B(n) 

and we may be able to find out what some of these 

values are. But a uniform, systematic procedure, that 

will work for all n, has just been proved to be 

impossible. 

 

§7. 10. Busy Beaver and the Halting 

Problem 
 We’ve given independent proofs of the 

Unsolvability of the Halting Problem and the 

Uncomputability of the Busy Beaver function. 

Actually, each could have been proved from the other. 
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If the Halting Problem did have a solution, that is if we 

had a program like PREDICTOR, we could calculate 

B(n) very simply, as follows: 

 

(1). Go through the n-state programs, one by one and 

run PREDICTOR. This will tell us which machines to 

disqualify. 

 

(2). Then we simulate the remaining ones, keeping a 

track of how long each one runs for.  Since we can 

guarantee that these remaining candidates will all 

eventually halt, this procedure will terminate in a finite 

time. 

 

(3). Finally we run through our record of how long each 

machine lasted, and take the maximum. This will be 

B(n). 

 

 The fact that we’ve shown that it’s impossible to 

compute the Busy Beaver function shows that our 

assumption that we had solved the Halting Problem 

must be false. 

 

 Now suppose that we did have a program which 

could calculate the Busy Beaver function. We would 

then be able to solve the Halting Problem as follows: 

 

(1). Given a program, count the number of states, n. 

 

(2). Use BEAVER to compute B(n). 
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(3). Simulate the program for the first B(n) steps. 

 

(4). If it halts within the first B(n) steps the answer is 

that the program will halt. 

 

(5). If it hasn’t yet halted by the B(n)’th step we’ll know 

that it can never halt, because B(n) is the maximum 

number of steps for halting programs of that size. 

 

 The fact that we’ve shown that the Halting 

Problem is unsolvable gives us a contradiction and 

hence proves that BEAVER could not exist. So we’ve 

just shown that BEAVER exists if and only if 

PREDICT exists. Proving that either one cannot exist 

is sufficient to show that neither exists. In fact we’ve 

given independent proofs for each, so in a sense, each 

is doubly proved. 

 

 Not that a second proof increases the reliability 

of our claim. A proof is a proof is a proof. But the 

different methods employed in these two independent 

proofs are interesting and instructive. 

 

 There are many other computer programs you’d 

be wise not to waste time trying to write. A program 

that takes as input any two programs and determines 

whether or not they are equivalent, is such an 

impossibility. It would be nice to have such a program, 

particularly when marking students work in computing 

classes. If your program is equivalent to the tutor’s then 

it’s correct. We could leave it to the computer to 
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decide. Such computer marking of programs is actually 

used in practice, but they are all limited in their 

performance. 

 

 No program can possibly test equivalence in all 

circumstances. Why? Because it has been shown that 

such a program, if it existed, would lead to a solution 

of the Halting Problem. And since there is no solution 

to the Halting Problem there cannot exist a solution to 

the Equivalence Problem. 
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SCIENTIFIC 

ARTICLE: 
AMITERMES LAURENSIS 

[This scientific article begins as an accurate account 

of a species of termite but, towards the end, it becomes 

somewhat fanciful in order to tie in with the material of 

the previous chapter. The reader must decide where 

fact gives way to fantasy.]  

 

 Termites are found in many countries of the 

world, notably in Africa and Australia. The aboriginal 

word for termite is ‘ngartdan’. 

The Amitermes Laurensis is a species of termite 

that builds mounds in the Northern Territory of 

Australia. They occur in Cape York Peninsula and 

eastern Arnham Land. In Queensland, north of the 

township of Laura (hence the name of the species), 

these mounds are built as thin flat plates, oriented in a 

north-south direction. South of Laura the mounds are 

conical. 

 Termites are sometimes referred to as “white 

ants” though ants and termites come from quite 

different insect groups. In fact termites are more 

closely related to cockroaches than to ants. Ants have 

elbowed antennae and a waist while termites have 

antennae like strings of beads and no waist. 

However, like ants, termites are social insects 

and have a caste system. There are the reproductives, 
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the workers and the soldiers. The latter two castes have 

neither eyes nor wings. 

The mounds, which can be up to ten metres tall, 

are highly organised “cities” with areas for different 

activities. The reason for the distinctive north-south 

shape of the Amitermes Laurensis species is to 

maintain a comfortable interior temperature. In the 

mornings the large, flat, eastern face gets the sun while 

the western face remains several degrees cooler. The 

majority of the colony is to be found on the cooler side 

in the mornings. In the hottest part of the day the sun 

shines directly only on the northern edge, helping to 

keep the mound cool. 

Most termites eat wood. They can hollow out 

large branches and this is the source of the hollow tubes 

from which the Aborigines make didgeridoos. 

However the Amitermes Laurensis feed on grass and a 

single colony of them can process more grass than a 

large grazing animal. Moreover they are much more 

efficient in processing biomass than cows or sheep. 

They are probably the most efficient life-form on the 

planet for extracting energy from plant material. It is 

estimated that termites can turn a single sheet of paper 

into two litres of hydrogen. 

The lignocellulose polymers are firstly broken 

down into simple sugars and hydrogen by fermentation 

in the termite’s gut and then other bacteria transform 

these sugars into energy. Because of their efficiency in 

producing so much energy from a single kilogram of 

biomass they may one day help to solve the world’s 

energy problems. 
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 The height that a termite mound can reach is 

determined by the number of termites in the colony, but 

it is not a simple linear relationship. A colony twice as 

large as another would not produce a mound twice as 

tall. Hence there is a mathematical function, called the 

Busy Termite Function. T(n) is the height in 

millimetres of a mound that a colony of n termites can 

build. 

 

 Though we can determine T(n) for specific 

values of n, by measuring termite heights and 

estimating the size of the colony, it has not been 

possible to obtain a mathematical formula for it. 

 

 This information is of interest not only to 

scientists studying termites, but also to the termite 

colonies themselves. They need to know, for example, 

whether they should continue to grow as one colony or 

to split into two. What is surprising is that termite 

colonies can compute the termite function, in a crude 

way. 

 

 Every termite mound is, in effect, used as a 

computer for this purpose just as Stonehenge was a 

computer for making simple astronomical predictions. 

Indeed a termite mound could be called ‘Sandhenge’ in 

view of the fact that the mound is constructed from 

particles of sand, held together by termite saliva. It is 

ironic that such silicon based computing was going on 

long before the invention of the silicon chip. 
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 Each termite can hold eight grains of sand in its 

mandible, or bite, and this can represent a number from 

0 to 255. The exact process by which the termites 

cooperate to perform the Busy Termite program has yet 

to be discovered. What we do know is that the steps, 

which must be genetically programmed in their DNA, 

cannot compute the Busy Termite function, T(n), for 

all values of n because it has been proved that this 

function is non-computable! 

  



 263 

8. THE 

UNDECIDABLE 
 

§8.1. Axiomatic Systems 

 As we have said, mathematical truth is 

established by logic, starting with some fundamental 

assumptions called axioms. One is obliged to accept the 

conclusions provided one accepts the logical principles 

used as well as the axioms. There is a real sense in 

which a set of axioms is a creed, like a religious creed. 

 

 Euclid is credited with devising the first set of 

axioms – the axioms for Geometry or, as we now 

consider it, the axioms for Euclidean Geometry. These 

axioms were considered to be ‘self-evident’. Axioms 

such as “between any two distinct points there is 

exactly one straight line”. Far from being self-evident, 

this is based on experimental evidence and has the 

same status as a scientific ‘fact’. 

 

 Axioms for other mathematical systems were 

proposed in the late 19th century. The first were the 

axioms of Group Theory. Never mind what it is or what 

its axioms are. Rather than self-evident truths they were 

considered to simply make up a definition of a group. 

 

 These days there is much controversy about gay 

marriage. Some regard it as self-evident that ‘marriage’ 

means an arrangement between a man and a woman. In 
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fact, it is merely the definition of the word ‘marriage’. 

Certainly there’s no doubt that this is what was implied 

by the word over centuries. Others say the definition 

should be broadened. There’s a long history of the 

meaning of words being broadened. ‘Money’ once 

referred to what we now call ‘currency’ – coins and 

notes, but the meaning has been broadened to include 

electronic transactions. That doesn’t mean that the 

meaning of ‘marriage’ should be broadened. There are 

strong arguments on both sides. The point I’m making 

is that each person who uses the word ‘marriage’ 

should be prepared to state their definition. 

 

 The attitude towards Euclid’s axioms changed in 

the eighteenth century. They were no longer considered 

to be self-evident, but merely part of the definition of a 

particular geometry called Euclidean geometry. Other, 

slightly different, sets of axioms were set up for other 

geometries. From a mathematical point of view all of 

them are correct. It’s up to the scientist, the physicist, 

the cosmologist, to decide which is correct for our 

universe. And the jury is still out on that question. 

 

 A rather different state of affairs exists for Set 

Theory. A ‘set’ is a collection of things. In Axiomatic 

Set Theory these things are mathematical objects. Now 

unlike Group Theory, where there are lots of systems 

satisfying the axioms, in Axiomatic Set Theory we’re 

attempting to describe a concept that we hold 

intuitively. 
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§8.2. The Russell Paradox 
 Set theory has come to underlie all of 

mathematics, so in a sense it is the foundation for all 

mathematics. Up to the end of the 19th century it was 

considered that the truths of set theory were self 

evident, just as we don’t fuss too much about the logic 

we employ. One of the assumptions is that for any 

property that things might have there is a 

corresponding set, consisting of all the things that have 

that property. This is the process of turning an adjective 

into a noun. ‘Black’ is an adjective, so there is the set 

of all black things. But the philosopher Bertrand 

Russell, who was interested in the foundations of 

mathematics, pointed out that the set of all sets that do 

not belong to themselves is self-contradictory. 

 

 Perhaps a bit of notation will help us to 

understand this. The fundamental property of sets is 

that things belong to them. We denote the fact that the 

thing x belongs to the set S by the notation x  S. 

 

 If P is a property, like being black, and x is a 

thing, we denote the statement that x has the property 

P by Px. So if c = a crow and Bx = “x is black” then Bc 

is a true statement, while Bd is false if d = a dove. 

Crows are black but doves are not. 

 

 The set that corresponds to the property P is 

denoted by {x | Px}. Read it as “the set of all x such that 
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Px (or Px is true). The naïve assumption was that for 

all properties P there must be a set {x | Px}. 

 

 Russell considered the property of something not 

belonging to itself – in the sense of set belonging. Here 

the something is a set. A set can belong to another set 

because it is possible to have sets of sets, or sets of sets 

of sets .... 

 

 If T is the set of all pairs of distinct whole 

numbers then the set consisting of just 3 and 5 would 

belong to T. The symbol for “not belonging” is , just 

like the symbol for “not equals” is obtained by crossing 

out the equals sign, as in . 

 Now some sets clearly don’t belong to 

themselves. The set of all positive numbers is not a 

positive number. But if there is such a thing as the set 

of all sets, then it belongs to itself.  

 

 So Russell said, what if S = {x | x  x}? This 

would be the set of all sets that are not members of 

themselves. This would be the case for most sets we 

might think of. 

 

 The set of all even numbers is not an even 

number. The set of all triangles is not a triangle. But the 

set of all infinite sets, if there is such a set, is itself an 

infinite set. 

 

 You may wonder why I keep saying, “if there is 

such a set”. I will discuss this later. 
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 The question is: 

 

Does S belong to S? 

 

 Clearly the answer would have to be either “yes” 

or “no”, but let’s consider each possibility in turn. 

 

SUPPOSE that S  S. 

 Then it must satisfy the corresponding property, 

that is S  S. This is a contradiction. 

 

SUPPOSE that S  S. 

 Then S satisfies the property that defines S and 

therefore S  S. Again, a contradiction. 

 

 This seems like one of those logical paradoxes 

like the sentence “THIS SENTENCE IS FALSE”. But 

we can’t ignore it. Under our naïve concept of set 

theory such a set exists. If we want to ban it from being 

a set we’d better explain to it why it’s being kicked out! 

 

 This may also remind you of the argument from 

the chapter on the uncountable. The difference is that 

in that case there was an assumption that led to the 

contradiction. If one can find a different chairman for 

every committee then we get a contradiction. Therefore 

it is impossible to provide a different chairman for 

every committee. It is false that there is the same 

number of subsets as elements. 
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 But with the Russell Paradox there appears to be 

no such initial assumption, apart from the intuitively 

obvious ‘fact’ that for every property there’s a set of all 

things with that property. Well, then, intuitively 

obvious or not, this assumption has to go. 

 

 Here we have a fundamental contradiction in set 

theory. And since we want to build our mathematics on 

the foundation of Set Theory, all of mathematics would 

fall to the ground if we didn’t remove such a flaw. If 

you allow a single contradiction into mathematics you 

can prove anything. 

 

 I remember one of my lecturers telling me this 

and when someone asked him to prove that he was the 

Pope, assuming that 0 = 1, he said, “If 0 = 1 then, 

adding 1 to both sides, we conclude that 1 = 2. The 

Pope and I are two people, so therefore the Pope and I 

are the one person. QED.” 

 

 Well, you can imagine the fuss that Russell’s 

Paradox caused when it was first announced. At least it 

caused a fuss amongst those who were bothered about 

the foundations of mathematics. Ordinary working 

mathematicians just said, “oh, that’s interesting” and 

went back to their work. They knew that someone 

would fix up the problem, and that they did. 

 

 The way of fixing up the problem was to set up 

a collection of axioms that made some restrictions on 

which properties do lead to a set. There have been 
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several formulations but they have all been proved to 

be equivalent to one another. The most well-known set 

of axioms are called the ZF axioms, after their 

proposers Zermelo and Fraenkel. I won’t list them here 

because they’re long and sound quite technical. 

Basically they mostly say that “if such and such is a set 

the so and so is a set”. They are all dependent on 

already having some sets with which to make other sets 

– except for the first axiom, the existence of the empty 

set. 

 

 The empty set is the set with no elements. It 

doesn’t matter what the no elements are. The set of 

unicorns is the same empty set as the set of elves or the 

set of whole numbers lying strictly between 1 and 2. 

Axiom 1 in the ZF system says: There exists a set 

corresponding to the property x  x, that is {x | x  x} 

exists. The symbol for the empty set is . Now you 

might be thinking that is silly to have a set with nothing 

in it. 

 

“Oh, I have a collection of vintage Rolls Royce 

automobiles.” 

“Wow!  How many have you got?” 

“Oh, it’s the empty set.” 

 

 Stupid as it might seem, where would we be 

without the number zero? For centuries zero was never 

considered to be a number. Why have a number for 

something that doesn’t exist. Yet, our modern system 

of notation for numbers relies on having zero. The 
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difference between my bank balance and that of Bill 

Gates is just a whole lot of zeros! 

 

 Now there’s something rather delightful in the 

fact that all of mathematics can be manufactured from 

the empty set. First there’s the set {} that contains 

just the empty set. It isn’t the empty set itself because 

it does have something in it, even though that 

something is empty. Then there is {, {}}. This set 

contains two sets, the empty set itself, and the set 

consisting of the empty set. It might seem that we’re 

splitting hairs here, but the distinction between  and 

{} is important. In fact, when the number 2 is defined 

it is defined in this way of developing mathematics, it 

is the set {, {}} and 3 is {, {}, {, {}}. If this 

seems a rather esoteric way of defining the number 3, 

let me ask how you would define it. I’m sure what you 

might come up with would be more intelligible to a 

typical kindergarten pupil than {, {}, {, {}} but 

it wouldn’t stand up to the high standard of rigour that 

professional mathematicians require. 

 

 You might say that this shows that God created 

mathematics. Just as God created the world from a void 

He created the whole of mathematics from the empty 

set! On the other hand, if you are somewhat of an 

atheist, at least you’ll find a resonance between 

mathematics created from the empty set and the big-

bang theory of how the universe began. 
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§8.3. Axioms for Mathematics 
Almost all of mathematics can be built up from 

the following axioms. They 

are called the Zermelo-

Fraenkel Axioms, or ZF for 

short. Other foundations have 

been suggested, but they are 

all equivalent to the ZF creed.  

For ‘creed’ it is – just as a 

religious creed. They are 

statements whose truths are 

taken without proof. One just 

has to believe in them. 

Remember that it is not 

possible to prove something 

from nothing. 

 

In addition, there are assumptions about logic, 

we would be considering logical axioms as well. These 

will regulate the use of words such as ‘and’, ‘or’ and 

‘implies’. 

 

Six of the eight ZF axioms are: 

 

Equality: Two sets are equal if they have precisely the 

same elements. 

 

Empty Set: There is a set with no elements. 
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Pairs: If S, T are sets there is a set with just S and T as 

elements. 

 

Powers: If S is a set so is the set of all subsets of S. 

 

Union: If S is a set so is the set of all elements of 

elements of S. 

 

Specification: If S is a set and P is any property that 

can be expressed entirely in terms of set membership, 

then there is a set whose elements are precisely those 

elements of S for which the property holds. 

 

 The other two axioms are a bit more technical, 

so we’ll omit them. A full discussion can be found in 

my notes on Set Theory on the website 

coopernotes.net. On the basis of these eight axioms 

virtually the whole of mathematics can be built. 

 

 So can we now be assured that no further 

contradiction, like Russell’s Paradox will arise? This 

amounts to asking whether the ZF axioms are 

consistent. The slightly disturbing answer is that no, we 

do not know that they are consistent. Most 

mathematicians believe that they are, but most 

mathematicians also believe that we’ll never be able to 

prove consistency. 
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§8.4. Consistency 
  A set of axioms is inconsistent if a contradiction 

can be validly derived from them. If it is not 

inconsistent then it is defined to be consistent. The 

easiest way to prove consistency is to come up with a 

model for the axioms, that is, an actual interpretation 

that satisfies all the axioms. 

 

 It’s easy to come up with an inconsistent set of 

axioms. For example consider the following axioms for 

a super number. The set of super numbers has two 

operations, called addition and multiplication, such that 

the following axioms hold. 

 

Axiom 1: There is a super number 0, such that: 

n + 0 = n for all super numbers, n. 

Axiom 2: There is a super number 1 such that: 

1 + 1  1. 

Axiom 3: (x + y)z = xy + xz for all super numbers x, y 

and z. 

Axiom 4: There’s a super number  such that 0 = 1. 

 

 This system of axioms is inconsistent. Here’s a 

proof. 

 

By axiom 1, 0 + 0 = 0, and so (0 + 0) = 0. 

By axiom 3, 0 + 0 = 0. 

By axiom 4, 1 + 1 = 1, contradicting axiom 2. 
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 Here’s another rather exotic axiomatic system 

that I’ve constructed to illustrate the concept of 

consistency. I call the system a society. In a society 

there’s a set of undefined things called persons and 

three undefined relations: 

 

   father of, 

   mother of, 

   married to 

 

 Now the terminology suggests we’re thinking of 

family relationships, and certainly that’s what inspired 

these axioms. But it must be emphasized that these 

things called ‘persons’ are to be considered as 

undefined and so we must not make any use of what we 

know of actual family relationships. 

 

 We assume the following axioms: 

 

Axiom 1: There exists a person. 

Axiom 2: Each person has a unique mother and a 

unique father. 

Axiom 3: If two people have the same mother then they 

have the same father. 

Axiom 4: The mother and father of every person must 

be married.  

Axiom 5: If two people have the same father they can’t 

marry. 
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Suppose we define a parent to be a ‘person’ who is 

either a mother or a father and a grandmother to be 

the mother of a parent. 

 

Theorem 1: Every person has exactly two 

grandmothers. 

Proof: Let Peter be a person. 

By axiom 2 Peter has exactly one father, who we’ll call 

Frank, and exactly one mother, called Michelle. By 

axiom 4, Frank is married to Michelle. 

Suppose Frank = Michelle. Then by axiom 4, Frank is 

married to himself, contradicting axiom 5. 

Hence Frank  Michelle. 

 

By axiom 2, Frank has exactly one mother, denoted by 

Mildred and Michelle has exactly one mother, denoted 

by Mary. 

 

Suppose Mildred = Mary. That is, suppose Frank has 

the same mother as Michelle. Then by axiom 3 Frank 

and Michelle have the same father, denoted by Phillip. 

 

By axiom 5, Frank and Michelle can’t marry, 

contradicting what we proved earlier. 

Hence Mildred  Mary and so Peter has exactly 2 

grandmothers. 

 

 Notice that we proved the theorem only using the 

axioms, and without appealing to our intuition, or 

knowledge of society. Now are these axioms 

consistent? There’s no point in proving theorems for a 
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non-existent system. To do this we need to devise a 

model – a concrete example in which these axioms 

hold. 

 

 Here’s a different model for this system. A 

‘person’ is one of the positive integers 1, 2, 3, … The 

father of n is 2n and the mother of n is 2n + 1. Person 

m is married to person n if m + n is odd. This system 

we shall call a ‘society’. 

 

Axiom 1 and Axiom 2 are clearly true. 

 

Axiom 3: If m and n have the same mother then 2n + 1 

= 2m + 1 and so 2n = 2m, which means that they have 

the same father. 

 

Axiom 4: The father and mother of person n are 2n and 

2n + 1. Since their sum is odd, they are married. 

 

Axiom 5: If m and n have the same father the 2m = 2n 

and so m = n. Thus m + n is even and so they can’t be 

married. 

 

 The fact that a model exists for a society, means 

that the axioms are consistent. But societies as 

described by these axioms can be very different to the 

model I had in mind when I devised the axioms. For, in 

the arithmetic model, any even number is married to 

every odd number, since their sum is odd. What an 

infinitely bigamous society! And every person has only 

one child! 
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 In Axiomatic Set Theory we often consider extra 

‘optional axioms’. We could add optional axioms to 

make it more like the society of real people and their 

families. But we would have to be very flexible, 

because there some rather strange family relationships 

in today’s society. 

                

§8.5. The Axiom of Choice 
 Now, what’s really interesting is that there a few 

things that can’t be proved from the ZF axioms which 

most mathematicians believe are true. One of these is 

the Axiom of Choice, abbreviated to AXC. In a nutshell 

the AXC says that if you have a whole bunch of non-

empty sets you can simultaneously choose one thing 

out of each of them. This seems an obvious enough 

statement but, remember that it says that this is 

possible, even if the sets are infinite and even if there 

are infinitely many of them. 

 

 Of course such a choice is impossible in practice 

because it would take infinite time, but we’re not 

talking about ‘in practice’. The question is, does such a 

choice exist and can they choices form a set? (The last 

question is not quite the one that is asked, but it’s near 

enough for our purposes.) 

 

 The Axiom of Choice has been proved to be 

consistent with, and independent of, the ZF axioms. 

To show this you assume the ZF axioms and construct 

a model in which not only the ZF axioms hold, but also 
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the Axiom of Choice. That’s the ‘consistent with’ part. 

Then you construct a different model, with a different 

definition of ‘belonging to’ that satisfies the ZF axioms 

but does not satisfy the Axiom of Choice. That’s the 

‘independent of’ half of the statement. Putting these 

halves together we come up with the statement: 

 

THE AXIOM OF CHOICE IS UNDECIDABLE. 

 

 This means that, assuming 

the ZF axioms are consistent, 

you’ll never be able to prove 

that the AXC is true. But nor 

will you ever be able to prove 

that it’s false. If ever a 

contradiction arises in 

mathematics when using the 

Axiom of Choice it won’t be 

the fault of that axiom. It will mean that an 

inconsistency will have been found in the ZF axioms 

themselves. If ever a contradiction arises from denying 

the Axiom of Choice it will mean that the ZF axioms 

themselves are inconsistent, not the denial itself. 

  

 The bottom line is that you are free to choose! 

You can believe in AXC or not. Both positions are 

logically valid. Naturally, like most mathematicians, 

you will no doubt opt to believe in AXC. It sounds so 

plausible. But before you become a paid-up member of 

the Axiom of Choice religion, let me point out the 

following consequence of the Axiom of Choice. 
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 It has been proved, assuming the ZF axioms, 

together with the AXC, that in principle it’s possible to 

take a solid ball and dissect it into several pieces and to 

reassemble the pieces to make two solid balls of the 

same size as the original one! 

 

 Your reaction to this is probably to say that this 

proves that the AXC is false. After all, such a situation 

would contradict the law of conservation of volume, 

surely. If you take a piece of wood its volume would 

remain constant no matter how you cut it up and 

reassembled the pieces. That is, ignoring the sawdust 

which, of course, we’re doing. 

 

 However the law of conservation of volume only 

applies if the pieces have a defined volume. If a set of 

points is highly fragmented, like a cloud of infinitely 

small particles, then it’s not possible to define its 

volume. 

 

 The way of dissecting the original sphere and 

reassembling them is not something one could 

replicate, even with precision tools. If it was possible 

to convert one ounce of gold into two with a laser 
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cutter, the price of gold would plummet! But the 

‘pieces’ that are required to perform this magic are so 

highly fragmented that their volumes don’t exist. 

 

 Needless to say, while most mathematicians are 

happy to accept the Axiom of Choice because it 

simplifies the statements of many of their theorems, 

there’s a determined minority who reject it. A 

comforting thought, though, is that no bridge will ever 

fall down because its engineer believed or didn’t 

believe in the AXC. 

 The difference between believing or not 

believing the Axiom of Choice is more aesthetic than 

practical. In this sense it’s rather different to a religious 

belief. The Axiom of Choice believers will never wage 

war on the infidels, and no mathematician will become 

a martyr to his or her belief. 

 

 The general consensus is that one should try not 

to use the Axiom of Choice, but if necessary one uses 

it, and admits that it is “on the basis of the Axiom of 

Choice”. 
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§8.6. The Peano Axioms 
The very first mathematical system we 

encountered was the system of the natural numbers: 

0, 1, 2, 3, … 

When we did so, in kindergarten or even before, 

we were not interested in precise definitions. We learnt 

the many properties of natural numbers on the authority 

of our parents and teachers. Nowhere did we see a 

definition of the number 2, or a precise proof of the fact 

that 2 + 2 = 4. We might have experimented with a few 

pairs of objects and observed that combining one with 

another we got a collection which, when we counted, 

gave us 4. Hence we learnt our mathematics as an 

experimental science. 

 

Of course we did notice that sometimes it didn’t 

work. Pour a litre of water into a bowl containing a litre 

of sugar and you’ll find you get a whole lot less than a 

litre of sugar syrup. This can be explained, in part, by 

the air spaces between the grains of sugar, but to 

account for the reduction in volume completely you 

need to take the chemistry of solutions into account. 

 

Nevertheless you understood that something 

different is going on here and that 1 + 1 = 2 is still valid 

mathematically. 

 

 One approach to constructing the natural 

numbers, and their arithmetic, rigorously is to build 

them up as sets of sets of sets within axiomatic set 
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theory. Another approach is to define them by a set of 

axioms, the Peano Axioms. 

 

We postulate a set of undefined things, together 

with an undefined function ‘successor’. You can think 

of the ‘successor’ of n as n + 1, written n+, but that 

interpretation isn’t specifically part of the axioms. 

 

Axiom 1: 0 is a natural number; 

 

Axiom 2: If n is a natural number then so is its 

successor n+; 

 

Axiom 3: There is no natural number n for which 

n+ = 0; 

 

Axiom 4: If S is any set of natural numbers that 

contains 0, and contains n+ whenever it contains n, then 

S is the set of all natural numbers. 

 

 On the basis of these axioms we can define 

addition and multiplication and prove the basic 

properties of arithmetic. 

 

§8.7. Gödel’s Incompleteness Theorem 
 We’ve seen how mathematical systems, such as 

Set Theory, can be built up on the basis of a set of 

axioms. Provided that a set of axioms is consistent we 

can prove meaningful theorems about the system. But 

can we prove every true statement from the axioms? If 
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we left out one of the set theory axioms there would be 

true statements about arithmetic that couldn’t be 

proved. A set of axioms is complete if every true 

statement about the system can be proved. Are the ZF 

axioms complete? 

 

 The answer is no. Well, then, we’d better add 

some extra axioms to make it complete. Unfortunately 

that’s not possible. In 1931 Kurt Gödel proved that, not 

only are the ZF axioms incomplete. No set of axioms 

can be constructed for which they will be complete. 

What’s more it is not possible for a finite set of axioms 

to exist for any formal system in which basic arithmetic 

can be formulated, such that the axioms are complete. 

 

 He did this by converting every statement in 

such a system into an arithmetic statement. He 

managed to express to express the statement “this 

statement cannot be proved from the axioms” as a 

statement about arithmetic. Such a self-referential 

statement cannot be proved from the axioms, yet it is a 

true statement and corresponds to a true statement 

about arithmetic. 

 

 Gödel’s original proof is very long, and very 

hard to read. A much simpler proof by Nagel & 

Newman in 2001 converts the statement to one about 

computability, and uses the machinery of Turing 

Machine to show that completeness would imply that 

the halting problem could be solved, which we know is 

impossible. 



 284 

 So here we are left with this unsatisfactory state 

of affairs. The ZF axioms on which the whole of 

mathematics can be built, cannot be proved to be 

consistent, but it can be proved to be incomplete. So it 

is possible that a contradiction could be deduced from 

these axioms. But if, as we hope, they are consistent, 

they are still incomplete. There are truths about 

arithmetic (though not ones we’d be ever likely to 

meet) that cannot be proved from any finite set of 

axioms! Mathematics is very far from being cut and 

dried. 

 

 At the heart of Gödel’s proof is a very clever 

method for converting statements about the system into 

arithmetic statements within the system. For a start, 

statements are expressed symbolically, such as: 

x(−(x = 0) →y(xy = 1)) 

which means “for all x, if x is not equal to zero then 

there exists y such that x times y is equal to 1”. 

 

 Gödel devised a system for coding these 

statements as a number by assigning a code to each 

symbol and building up a number for each statement on 

the basis of that. So, given a number n one could, if that 

n indeed represented a statement, decode it and so 

obtain the corresponding statement G(n). 

 

 Every possible statement would have a code, but 

not every code would correspond to a valid statement. 

The numbers involved would be extremely large, but 

as this is an ‘in principle’ exercise, that isn’t a worry. 
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 Now consider the statement that a given 

statement S is provable. A proof is just a list of 

statements, where each one is an axiom, or a previously 

proved theorem, or a logical consequence of the 

previous ones, and where the statement of the theorem 

is the last in the list. There’s a mechanical way of 

testing the validity of a proof and so one could, in 

principle, write a computer program for testing whether 

a given statement is provable from the axioms. It would 

be a case of generating all possible lists of statements 

that have S as the last statement, and then testing the 

‘proof’ for validity. 

 

 Gödel showed how provability could be 

expressed as an arithmetic statement about natural 

numbers and so the statement P(n) = “the statement 

with Gödel number n is provable” can be expressed as 

an arithmetic statement and so will have a certain 

Gödel number. Similarly, the statement N(n) = “the 

statement with Gödel number n is not provable” has a 

Gödel number, say g. 

 

 Gödel then asked whether N(g) is true or false. 

The statement N(g) claims that it, itself, is unprovable. 

Thus we can obtain, as a purely arithmetic statement, 

within the language of arithmetic, a statement which 

claims “I am unprovable”. Now such a statement can’t 

be false because being false would mean it was 

provable and hence true. It must therefore be true and 

hence it’s a true but unprovable statement in arithmetic. 

But wait! Haven’t we just proved that it is true? 
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 Certainly we gave a meta-mathematical proof. 

But this proof is not one which could be expressed as 

an arithmetic proof within the system. Our unprovable 

statement is not unprovable in any absolute sense. It 

might not even be meaningful to talk about absolute 

unprovability. N(g) is unprovable in the relative sense 

that no proof of it could ever be constructed which 

starts from the axioms and proceeds using the rules of 

inference. And even if the axioms and rules were 

supplemented by others, so long as they remained finite 

in number, the existence of unprovable statements 

would remain. 
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JOKE: PALINDROME 
 

 An Englishman, an Irishman and a Scotsman go 

into a bar. An American, who was already in the bar 

comes up to the Englishman and says, “Hey buddie, if 

you can tell me a good joke I’ll buy you a beer”. 

 So the Englishman clears his throat and says, 

“37”. At this the bar erupts into an uproar of laughter. 

The American looks puzzled, but says, “well it appears 

that was a great joke, so what’ll you have?” 

 A little later the American goes up to the 

Scotsman and says, “I’ll buy you a whisky if you can 

beat that last joke”. The Scotsman stands on a stool, 

adjusts his kilt and says, “42”. Once again the bar 

erupts into laughter, even louder than before. Several 

patrons are so carried away by their laughter that they 

roll around on the floor. So the American buys the 

Scotsman a Scotch. 

 A little later the American turns to the Irishman 

and says, “You Irish are renowned for your wonderful 

humour. I bet you can top that last joke – if you do, I’ll 

buy you a pint of Guinness”. 

So the Irishman jumps up on the bar, adjusts his 

cap, and says, “93”. There’s deathly silence. Not even 

a murmur is heard. The American looks puzzled. 

“I’ve worked out that you folks must number 

your jokes so that all you have to do is to give the joke 

number and you all know what the joke is. But back in 

the States we tell our jokes in full. Now I’m a little 
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puzzled why that last joke fell so flat. What went 

wrong?” 

“Ah”, says the Scotsman, “you know what the 

Irish are like. They’re always getting things back to 

front.” 

“Well”, said the American, “would you mind 

telling me that last joke in full”. 

“Och, aye”, said the Scotsman, “but are ye sure 

ye want to hear it. As I said it’s not very funny”. 

“Well, yes”, said the American, “I’m fascinated 

by British humour”. 

“OK”, says the Scotsman, “Joke number 93 goes 

like this. An Englishman, an Irishman and a Scotsman 

go into a bar. An American, who was already in the bar 

comes up to the Englishman and says, “Hey buddie, if 

you can tell me a good joke I’ll buy you a beer”. So the 

Englishman clears his throat and says, “37”. 
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9. THE INEFFABLE 
 

§9.1. Proofs Of The Existence of God 

 We’ve finished the mathematical content of this 

book. This final chapter consists of some 

philosophical/theological musings that arise in some 

minds as a result of encountering those parts of 

mathematics that deal with the edge of the rational 

universe. If you have no interest in the fundamental 

questions of life then it’s best that you skip this chapter. 

 

 Now I wish to make it clear that my purpose in 

writing these notes is to communicate what I see as the 

nature of mathematics, not to talk about religion. I once 

received an email from an angry reader who believed 

that this chapter was the ‘pill’ and the previous ones 

were the ‘sugar coating’ and that my whole aim was to 

sneak religion in under the radar. 

 

 If you are one of those who get angry at the mere 

mention of anything religious then you’d better not 
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read on. But let me emphasise that I am not here talking 

about the ineffability of God, but the ineffability of 

mathematics. I present some ‘proofs’ of the existence 

of God, merely as a vehicle for discussing bad, or 

erroneous, logic. But, by the same token, the fact that I 

expose such faulty reasoning does not mean that I am 

arguing against the existence of God. 

 

 I lay no claim to any professional expertise in 

either philosophy or theology. But I can’t help going 

beyond the mathematics of the ineffable to the 

ineffable itself. The word ‘ineffable’ means 

‘inexpressible in words’. It’s a word that not only 

appears in hymns, describing God, but also in a large 

number of nineteenth century novels. We don’t use the 

word today, yet there’s as much interest in the 

transcendental as ever. 

 There’s a fundamental contradiction in the desire 

to discuss the ineffable – to say something meaningful 

about something that can’t be expressed in words. But 

by a little distortion of the meaning we can think of the 

ineffable as that which transcends logic. 

 

 Can one prove that God exists? There have been 

many attempts over the centuries. A very simplistic 

argument, at least in the Christian tradition, runs as 

follows. The Bible says that God exists. The Bible says 
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that everything in the Bible 

is the word of God and so 

must be true. Therefore 

God exists. Put more 

simply it says “GOD 

EXISTS AND THIS 

STATEMENT IS TRUE”. 

 

 One need not spend 

too much time in refuting this feeble argument. Just one 

word is needed – self-referentiality. It would have been 

far better if the Bible had made just two claims: 

 

verse 1: 

 

God exists. 

verse 2: 

Everything 

in this Bible 

is false. 

 

 If verse 2 is true then both verse 1 and verse 2 

are false. But this leads to a contradiction. Oh well then, 

verse 2 must be false. So it is false that everything in 

this little Bible is false. So something must be true. It 

can’t be verse 2 because we’re assuming that it’s false. 

It must therefore be verse 1 that’s true. Therefore God 

exists! 

 

This might seem momentarily convincing until 

we realise that any statement could have taken the place 

of ‘God exists’ – even ‘God does not exist’. The 
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problem lies in the fact that verse 2 is ‘self-referential’ 

– it refers to itself. 

 

One must refrain from considering any sentence 

that refers to its own truth. Such self-referential 

statements are meaningless and meaningless 

statements used in a logical argument can lead to 

paradoxes such as the above. 

 

I remember, when training for my accreditation 

as a lay preacher many years ago, that I had to study 

many of these arguments – mostly with big names like 

‘the ontological argument’. I mostly forget what they 

were. One of the ones I do remember went like this. We 

define God to be a being that’s perfect in every way. 

Now existence is more perfect that non-existence. So if 

God didn’t exist this would contradict our definition. 

Therefore God exists. 

 

 The problem with this argument is that it 

assumes the existence of a being that is perfect in every 

way but who does not exist. The contradiction comes 

from assuming simultaneously the existence and the 

non-existence and has nothing to do with perfection. 

 

 We might define ‘infinity’ as “a number that’s 

bigger than every number” and ask the question, “Does 

this infinity exist?” Well a number that doesn’t exist 

can’t be bigger than every number. (In fact a non-

existent number can’t be bigger than any number.) 

Therefore infinity must exist. But, of course, such an 
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‘infinity’ must be bigger than itself, a situation that is 

clearly untenable. 

 

The explanation for this paradox is that ‘not 

existing’ is not a property of something. It is the 

absence of something with a given property. We could 

say that a non-existent number can’t be even. But nor 

can it be odd. The statement ‘n is even’ is not true or 

false of a non-existent number – it is meaningless. In 

the same way “God is perfect” is not true or false of a 

non-existent God. It is meaningless. 

 

§9.2. Proof by Design 
Another proof that God exists, one that was very 

popular in Victorian times, is Proof by Design. The 

world is a complex, finely balanced precision structure. 

If certain parameters were changed by only a small 

amount life would not be possible. It could not possibly 

have arisen by chance. There must have been an 

intelligent Creator. A watch could not come about by 

cogs just throwing themselves together. So the universe 

must have been created by a Divine Clockmaker. 

 

 But then along came Darwin and his Theory of 

Evolution. Then came chaos theory, and the theory of 

fractals and complexity. It is possible for complexity to 

arise from simple rules. This can occur in biology, with 

the amazingly complex variety of plant structure 

arising from a small number of biological rules. If God 

created flowers he didn’t do it the way an artist might 
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painstakingly paint a complicated picture. You can’t 

argue if something is extremely complicated it must 

have been the result of an extremely brilliant maker. On 

the other hand you could argue, and many do, that to 

create life by a process of evolution that achieves 

complexity from a small set of simple rules is so 

brilliant that only a supreme mind could have thought 

of it. 

 

§9.3. The Mandelbrot Set 
You’ll have to make up your own mind on this. 

Let me simply describe the most well-known example 

of complexity arising from simple rules. Perhaps you 

have seen pictures of the Mandelbrot set. It’s a design, 

best seen in colour, which is startlingly beautiful. There 

is a boring bit in the middle, usually coloured black, 

and an outside that’s almost as boring. It’s the region 

between the two that is amazingly complex. If you 

zoom in to a part of the Mandelbrot set in this 

intermediate area you’ll see complexity upon 

complexity. The more you zoom in, the more 

fascinating the pattern becomes. Parts of the pattern, 

when you zoom in, look very much like other parts at a 

lower magnification, but they’re subtly different. Here 

is a view of the whole pattern. 

 



 295 

 

Here is a magnified view of one portion. 

 

 
 

This pattern is constructed by a computer 

program using a few very simple rules. The program 
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takes one point at a time on the ‘canvas’ and works out 

what colour to make it 

 

 It’s a very tedious process, and one would only 

attempt to do it with a computer program. One has to 

consider every point on the rectangular canvas. Well, 

actually there are infinitely many points in a given 

rectangle so one chooses a certain resolution and 

considers points in a rectangular grid, very close 

together. Usually one would make the distance 

between the points the same as the resolution of the 

computer screen, so that the pixels are considered one 

at a time. 

 

 Even so, this may involve many thousands of 

points. We also have to choose a scale, so that one unit, 

in each direction, is equal to so many pixels. 

 

We choose at the outset, along with the scale, 

certain numbers N and R. You might, for example, 

choose N = 100 and R = 10. The number N represents 

the maximum number of steps we will perform for each 

point and R represents the radius of a circle whose 

centre is at the middle of the screen. 

 

Each point is considered in turn. We move 

systematically so that at the end we’ll have considered 

every pixel on the screen. A certain calculation is 

carried out to determine what colour that pixel should 

be coloured and the image is built up in this way. 
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This calculation generates a sequence of points, 

though these points are not plotted. The sequence starts 

at the point whose colour we are determining. There’s 

a very simple rule that calculates the next point in the 

sequence. 

 

If a point in the sequence stays within the circle, 

of radius R, for N steps we colour that starting point 

black. If it breaks out of the circle we colour that 

original point some colour, depending on how long it 

took the sequence to ‘escape’ from the circle The points 

in the sequence don’t get plotted, only the starting point 

for each step. 

 

We decide on a certain palette of colours. We 

might choose red if the sequence breaks out of the 

circle after at most 10 steps, orange if it takes up to 20 

steps, blue if it has broken out of the circle by the 30th 

step, and so on. 

 

Your decisions as to colours, as well as the 

choice of N and R, may make your picture look a bit 

different to mine, but the overall effect will be much 

the same. 

 

A black and white version is far less interesting 

but still displays the enormous complexity of the 

Mandelbrot set. In this case, if the sequence breaks out 

of the circle after N steps it is coloured white. As with 

the coloured version, points whose sequence remains 
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within the circle for N steps, and quite probably will 

remain inside forever, are coloured black. 

 

All that remains is to tell you how we go from 

one point to the next in generating each sequence. 

 

If you are not frightened by a little bit of algebra, 

here’s the simple rule to move a point one step to create 

the next point in each sequence. The centre of the 

canvas is the origin for the x-y plane, the point to which 

measurements of all other points are referred. 

 

A horizontal axis through the origin is called the 

x-axis and the vertical axis through the origin is called 

the y-axis. A point has coordinates (x, y) if it is x units 

to the right of the origin and y units up. If x or y is 

negative then the point is to the left, or below (or both) 

of the origin. 

 

The rule for getting the next point (X, Y), 

following the point (x, y) in the sequence, is: 

X = x2 − y2 + a, Y = 2xy + b. 

where (a, b) is the point whose colour we’re trying to 

find. 

 

We begin with (x, y) = (a, b). 

 

If you know about complex numbers these equations 

can be expressed even more simply as: 

Z = z2 + a 
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where the points are represented by complex numbers 

and the complex number a represents the point we’re 

starting the sequence with. 

 

 You can do these calculations on a spreadsheet, 

though to do a whole image would still be far too 

tedious. However there are websites on the internet 

where you can see the main image and where you can 

zoom in on a particular region, just like in Google 

Maps. 

 

§9.4. Free Will 
 A fundamental prerequisite to having a religious 

faith is a belief in free will. If you don’t have the 

freedom to choose to accept or reject the belief, what’s 

the point? Mind you, this hasn’t stopped people in 

some parts of the world forcing others to accept their 

faith at gunpoint. 

 

 A common argument against religion is to claim 

that you have discovered some psychological or 

biological cause for religious belief. Oppressed people, 

who have a miserable life, will believe in an after-life 

where pain and suffering and poverty will be no more. 

It’s just wishful thinking. 

 

Others claim to have discovered a God-gene, 

which explains why some of us have a religious belief 

and others don’t. Still others claim that all emotions 

and all thought is purely a result of biochemical 
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processes. The human brain is influenced by its 

biochemistry and your belief in God can be explained 

by your diet, or your genetic makeup. 

 

 It’s an interesting thought that a belief in a purely 

deterministic universe is a contradiction. If I assert that 

my thoughts are determined by the laws of physics, 

chemistry and biochemistry, then my assertion is also 

the result of such deterministic processes. In what sense 

could such a belief have any validity? The concept of 

truth presupposes that there’s something beyond the 

material world. Otherwise what we might call true 

statements are just the babble of the mechanistic 

automata we call human beings. 

 

 But to say that there’s something beyond the 

material world is a long way short of believing in any 

sort of God. It is intellectually respectable to be an 

atheist, but I fail to see how it could be considered 

intellectually respectable to believe that human beings 

are purely machines, with no free will. 

 

Of course I can believe that my thoughts are valid 

truths, while yours are the result of deterministic 

processes. It’s an interesting idea that I am the only 

reality, complete with free will, and the rest of the 

universe is simply an illusion. 

 

 Whatever we might claim to believe we all act 

as if we have free will. It might be a great illusion but 

if it is we’ll never know it. But of course, as we all 
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know, free will is impacted upon by all sorts of external 

forces, and even internal, biochemical ones. No-one 

can claim to be completely free. 

 

In The Age of Reason by Jean-Paul Sartre, the 

protagonist wants to be completely free. As a result he 

refuses to make any commitments, because that would 

limit his freedom. “If I marry her I’ll remove, or at least 

reduce, my chance of marrying someone else.” Every 

decision involves a certain reduction in freedom. Better 

not make any decisions. 

 

So the person who’s so determined to maximise 

his free will is forced to lock himself into a prison of 

indecision. He ends up with less freedom. Free will is 

a currency that must be spent or it becomes worthless. 

 

 I am now going to describe a demonstration that 

purports to prove that people don’t have free will, even 

in a situation where there appear to be no external 

forces. Most people believe that they’re completely 

free when they select their lotto numbers, although 

certain combinations get chosen less frequently than 

others because people believe that they’re not random 

enough. Would you choose the numbers 1, 2, 3, 4, 5, 

6? It’s just as likely to come up as a more random 

sounding choice. The concept of random numbers is 

another area where there’s an interface between 

mathematics and philosophy, but we’ll not pursue this 

here. 
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 This demonstration is designed to be performed 

in public, but you can just read about it and think about 

it. You have an audience from which you select five 

volunteers. You ask them to stand out the front in a line. 

Then you introduce the theme of free will as follows. 

 

“Most people believe that they have free will. On 

being asked a certain question we might be influenced 

by certain facts, but if we have no facts, such as when 

choosing lotto numbers, we believe we can freely make 

up our minds.” Check that your five volunteers agree 

with this. If any say no, you had better replace them. 

 

 “I’m about to give you each a card that asks a 

question about one of the other volunteers. The 

question won’t even identify who that person is. At this 

stage they’ll only be identified as person A, person B, 

and so on. You must freely choose an answer, YES or 

NO. It doesn’t matter whether you’re correct, or not, 

because after all you don’t know yet to whom the 

question is referring. Oh, and you mustn’t let anyone 

else know your question.” 

 

 You give them cards, each of which has the same 

type of question: 

 

Will person A give the correct 

answer to their question? 

 

except that each person’s question will refer to a 

different person: A, B, C, D, E. 
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 You give each volunteer another card. On one 

side it reads YES and on the other side it reads NO, 

with these answers written large enough that the 

audience can read it. “Now I want you to display your 

answer by turning your card so everyone can see that 

answer.” 

 

YES  NO 

 

 Your volunteers will display a sequence of 

YES’s and NO’s. Perhaps they will all be YES, or all 

NO. You must select three of the volunteers so that you 

have an even number of NO’s. Tell the other two to sit 

down. Do this as follows: 

 

How 

many 

people 

say NO? 

0 1 2 3 4 5 

CHOOSE YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

NO 

NO 

YES 

NO 

NO 

YES 

NO 

NO 

NO 

 

 You’ll notice that in the last case it is not 

possible to choose an even number of NO’s. Luckily 

the chance of this happening should be only 1 in 32. 

The demonstration I have in mind will not work in this 

case. We’ll discuss later what you might do when this 

happens. 
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Assuming that you have either no NO’s or two 

NO’s out of your three chosen volunteers you proceed 

as follows. Ask each of the three to display their 

question as well as their answer. You now announce 

who the questions refer to. It will look as if you have 

determined this in advance, but you choose people only 

at this time. You’ll only choose someone who is in your 

chosen three, and never themselves. In fact, for best 

effect, your choice should be as follows, where the 

arrow shows who their question refers to. 

 

 

 

 

  

 

 

 

 

 Now ask the two people on the right hand to 

swap places so that the people referred to are as shown. 
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 It doesn’t really matter who is referring to 

whom, but it will seem a little less artificial if an 

adjustment is made. Now you ask any one of the three, 

“did you feel that you were completely free to choose 

your answer? You didn’t feel constrained in any way?” 

They of course will insist that they were free. 

 

 “But I will show you that you were forced to 

choose as you did because of the answers of the others. 

If you had chosen otherwise there would have been a 

logical contradiction. Suppose you had chosen 

otherwise.” 

 

At this you instruct them to turn their card over. 

You then say, “suppose you were correct.” Give them 

an other card marked with a tick, signifying that there 

answer was correct. Hopefully they can manage to hold 

all three cards without dropping any! 

 

  X 

 

                CORRECT              INCORRECT 

 

 You then infer whether the person that their 

question relates to is correct or incorrect. You then give 

them a card with the appropriate word. Then you do 

this again so that the third person is holding a tick/cross 

card. Then you do this one more time so that you 

determine whether the first person is correct or 

incorrect. Because of the odd number of NO’s this will 
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conflict with the card they are holding, and so you will 

have reached a contradiction. 

 

 “See, if you had answered differently to the way 

you did, your answer must have been incorrect, 

because a correct answer would lead to a contradiction. 

You then take away all the tick and cross cards and start 

all over again, this time giving the cross card to that 

person to display. You repeat the whole process, and 

discover that again you get a contradiction! “See, if 

you’d chosen other than what you did there would have 

been a logical contradiction. This proves that you had 

to choose the way you did! 

 

 Here’s an example of how this might work out. 

Remember each person’s question refers to the person 

on our right, except the last, whose question refers to 

the first. Suppose the five answers are as follows. 

 

 

 

 

 

 

We choose two NO’s and a YES as follows. 

 

 

 

 

 

 

YES NO NO YES NO 

NO NO YES 
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Now we swap the last two and move them together. 

 

 

 

 

 

 

We get the middle person (it could have been any of 

them) to change his answer to see what logical 

implications this might have. 

 

 

 

 

 

 

We suppose that the middle person was correct and you 

gave him a card containing a . 

 

 

 

 

 

 

 

 

The middle person said that the person on his left was 

correct (YES) and he was correct () so she must be 

correct. We give her a tick. 

  

YES NO NO 

YES YES NO 

NO YES YES 

 
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The third person says that the first would be correct, 

and the third person has a tick, so he is right. The first 

person gets a tick. 

 

 

 

 

 

 

 

 

 

But the first person says that the middle person 

will say NO and he is supposed to be correct in saying 

this (we have had to give him a tick). But the middle 

person says YES. This is a contradiction. 

 

Now suppose the middle person, if he had said 

YES, would have been wrong. Give him a card with an 

X. We carry out the whole process afresh and again get 

a contradiction. 

  

NO YES YES 

 
 

 
 

NO YES YES 

 
 

 
 

 
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The middle person said that the person on his left 

was correct (YES) but he was wrong (X) so she must 

be incorrect. We give her a cross. 

 

 

 

 

 

 

 

 

The third person says that the first will be correct 

and she is wrong, so he will be incorrect. Give the first 

person a cross. 

 

 

 

 

 

 

 

 

NO YES YES 

X 
 

NO YES YES 

X 
 

X 
 

NO YES YES 

X 
 

X 
 

X 
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But the first person says that the middle person 

will not be correct, and he is incorrect in saying this, so 

the middle person is correct. But the middle person is 

incorrect! 

 

 There’s a problem if all of the original five 

people say NO. We’ll not be able to select three people 

with an even number of NOs. This situation would be 

quite rare, but if it does arise you have the following 

options. 

 

(1) Confess that the demonstration didn’t work. 

 

(2) Upbraid them for not having enough faith in their 

fellow volunteers and choose a fresh set of volunteers. 

 

(3) Go through the above analysis to show that you get 

a contradiction, no matter whether the first person is 

correct or incorrect. Ask them how they have managed 

to defy logic and leave it at that. Hopefully nobody will 

ask “what has this got to do with free will?” 

 

 Remember that as you go round the circle of 

three (or all five) if someone has said YES then the next 

person will get the same tick or cross as they have, but 

every time you strike a NO the ticks and crosses swap 

over. Clearly with an odd number of such swaps around 

a circle with an odd number of people, there’s bound to 

be a contradiction. Of course this only superficially has 

something to do with free will! It merely demonstrates 

the fact that the questions are indirectly self-referential. 
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 So, after all this, does God exist? You certainly 

won’t find the answer in this book or even the Bible, as 

useful as the Bible has been to many people. If there is 

a God and He chooses to reveal himself to you, then 

you’ll know. Otherwise you have the free will to use 

the Axiom of Choice to not believe in God. (Actually 

that’s not quite what the Axiom of Choice says but 

never mind.) 

 

 Oh, you don’t believe in the Axiom of Choice. 

That’s a logically valid position to take. What? You 

don’t even believe in free will. Then why are you 

interested in proving things at all. You’re simply a pre-

programmed robot. 

 

 But let me remind you that this is a mathematics 

book, not a religious one. My goal is to explain the fact 

that logic has its limitations. As a mathematician I’m a 

great believer in it, but I’m fascinated to discover that 

there are impossible, uncountable, undecidable, 

unprovable things out there at the edge of the rational 

universe. 

 

 As the great bard once said: 

 

There are more things in heaven and earth, 
Horatio, 
Than are dreamt of in your philosophy. 
 

[Hamlet Act 1, Scene 5] 
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THE 
MATHEMATICIAN’S 

CREED 
 

I believe in the validity of standard logic, provided 
there is no self-referentiality, direct of indirect. 
 
I believe that Mathematics was created from the 
empty set and that the ZF axioms are consistent. 
 
I believe in Mathematical Intuition, 
Informed by rigorous proof, 
But inspired by Mathematical Imagination 
Fuelled by countless cups of coffee. 
 
I believe in the Axiom of Choice 
And the Continuum Hypothesis 
And whatever other axioms I might find 
convenient to use 
Provided they’ve been proved consistent with ZF. 
 
I believe that Mathematics contains no facts 
But depends on definitions and sets of axioms. 
 
I believe that mathematics is independent of the 
material world, so that it can be understood by a 
disembodied angel. 
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Yet I believe that mathematics is the one great 
tool for understanding the material world. 
 
It guides and underpins the Kingdom of Science 
And has brought great benefit to mankind. 
 
I believe that great as Mathematics is 
There are truths that lie beyond its reach. 
 
Our minds can soar into realms unknown 
But more truth lies beyond the edge of the 
rational universe. 
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POSTLUDE 

Disclaimer 
 

 Having completed this work I now look back and 

contemplate it. Is it all true? I’ve tried hard to ensure 

that every statement which is claimed to be true, is 

indeed true. 

 

 Yet if I had followed the practice of artists in 

certain eastern cultures, such as the carpet weavers of 

Iraq, I’d have deliberately woven in one or two flaws. 

Only Allah is perfect and if I claim to have achieved 

perfection I’m setting myself up in opposition to Him, 

which may have dire consequences. 

 

 But it’s not too late. So just to be on the safe side 

let me include the following disclaimer. 

 

At least one assertion in this book is false. 
 

 There, that should do it. But wait a bit. That 

disclaimer itself can’t help but be true. Why? Well, if 

it’s false then every assertion in the book is true, 

including the disclaimer itself! But that would be a 

contradiction. 

 

 So the disclaimer is true and so there must be an 

error somewhere else in the book. But where? I’ve 
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checked it most carefully, and I haven’t found an error. 

Yet simply by adding this disclaimer it forces me to 

admit that I must have made a mistake! But for the life 

of me I simply can’t find it. 

 

Perhaps, if logic is forcing me to have made a 

mistake, maybe I don’t have free will after all. What’s 

that you say? Self-referentiality is not allowed? I see, 

it’s wrong for me to make any statement about myself. 
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PUZZLE ANSWER 
 

 The secret to the puzzle lies in the way you join 

the two shorter ends.  

If you bend the strip and join the ends so as to 

make a short cylinder with the longer edges becoming 

the circles at each end, you have no more chance of 

solving the puzzle than before. 

 

 

 

 

 

 

 But if you give the strip a half-twist before you 

join the ends then what you have is a Möbius Band. (If 

your strip is too short to make the half-twist use a 

longer strip.) And on a Möbius Band the puzzle can be 

solved. 

 

  

 

 

 

 

 

 
A 

A 
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