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PRELUDE

Mathematics is the art of story-telling. Nobody
has ever seen a perfectly round circle or an infinitely
long line of zero width. They’re pure figments of the
mathematical imagination. As for imaginary square
roots of —1, ideal points where parallel lines meet, and
6-dimensional space ...! What fantasies can be dreamt
up by the fertile mind of a mathematician!

Stories, parables, fables, myths and legends can
carry profound truths that have a powerful impact on
the lives we lead. Mathematical stories are no
exception. This gossamer web we mathematicians spin
might be pure fancy. But it’s the best tool we have to
understand and predict the material universe. And it
reaches far beyond.

In this book we’ll go on a journey to the edge of
the rational universe. Our motivation will be that of an
explorer. We simply want to know what’s out there.
Whether any practical use can be made of what we find
there is not our prime concern. This book is not written
for the practitioner in logic or mathematics or
computing science.

Having said that let me add that the inspiration
for the book came from having to teach this material to
embryonic mathematicians and computer scientists in
several courses at Macquarie University. | began to
realise that, stripped of some of the formal
technicalities, much of the material | had taught to third
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year students, to honours students and even to
postgraduate students could be made accessible to a
wider audience.

Material which had hitherto remained locked up
in courses with such intimidating names as Advanced
Algebra, Axiomatic Set Theory and Theory of
Computation is too fascinating to leave there. All it
needs is a little less emphasis on symbolic formality
and a little more imaginative presentation.

That’s not to say that having read this book
you’ll be on a par with the students who graduate from
my courses. I like to think that what I’ve done is to
build a road into a national park that has hitherto only
been accessible on foot.

| taught this material many years ago as a
continuing education course for mathematical laymen
(and laywomen) at Macquarie University. | even wrote
an earlier, and much less complete, version of this book
to give out to the students. And there it lay.

More recently, many years later, | received an
email out from one of those students. She had attended
the course with her father and said how much she’d
enjoyed it. In fact she said, “I was thinking last night,
1t’s still the best maths class I ever took, and one of the
most fun things I ever did with my Dad.” I thought it
went well, but surely that must be an exaggeration!
However, it inspired me to dust off those old notes and
fashion them into this book.

I’m certainly not the first to have attempted to
bring deep ideas of logic and mathematics to a wider
audience. Lewis Carroll was one of the first in Alice
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Adventures in Wonderland — a book which delightfully
introduces many ideas of logic. |1 have also been
influenced by Abbott’s Flatland and the writings of
Martin Gardener and Douglas Hofstadter.

The final chapter goes beyond transcendental
mathematics to consider the philosophical/theological
question of the existence of something beyond the
material world and proofs of the existence of God. This
isn’t a technical discussion of epistemology but rather
a drawing together of some of the ideas in the earlier
chapters.

After each chapter there’s a little treat — a story,
poem or joke, reflecting the ideas developed in that
chapter. These may or may not aid the understanding
of the chapter but at least they provide some breathing
space before the next one and hopefully maintain the
whimsical frame of mind in which this material can
best be appreciated.

This book isn’t for everybody. Is it for you?
Here’s a check list. If you can answer “yes” to some or

all of them then go ahead and read this book.

(1) Are you intrigued by the logical reflexiveness of the
sentence ‘“‘this sentence is false?

(2) Have you read and enjoyed Alice’s Adventures in
Wonderland?

(3) Can you cope with the symbols in the following?
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Let P denote a computer program and let D denote
some data on which it acts. Suppose we denote the
output by P—D. So if P is a program for duplicating
data then P—-D = DD. And if such a program is given
its own description to duplicate, we have the equation
P—P = PP.

(4) Would it interest you if one could prove the
existence of God?
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1. THE IMAGINARY

§1.1. Mathematics and Truth

“What is truth?”
asked a famous
Roman governor.

Indeed, what is truth
and how are we to
know it? When we
were young we soon
learnt to tell the
difference between
truth and lies. Indeed we learnt to tell lies almost as

'5’

soon as we could talk. “It wasn’t me — Sarah did it!

As we got older we learnt that things are not
always what they seem. Optical illusions, and the
sleight of hand of a magician, fascinated us.

As adults we’ve learnt that truth can be relative.
Things are not always black and white. Even lies can
be all shades of grey from despicable black to the
purest of white.

Of all the subjects that we learnt at school,
mathematics is the one where truth is most clearly
defined. “What I like about mathematics,” I’'m often
told, “is that things are either right or wrong — you
really know where you stand.”
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Well, it’s true isn’t it? In our history essays it
wasn’t so important what conclusions we reached, we
were told, but rather how well we supported them.

History isn’t just about names and dates and
‘facts’ but more about explanations of why things
happened the way they did. And your explanation may
be quite different to mine yet be considered equally
good. Even the facts of history undergo change as
scholars revisit contemporary sources and discover that
what we’ve been taught all these years was not actually
the case.

Science is a very objective study, based as it is
on observation and experiment. Yet how often has
there been radical change there. The sun no longer
travels round the earth as it did for centuries until
Galileo. The atom is no longer an indivisible piece of
matter. Light, which once travelled in a straight line,
now curves in a gravitational field.

But the theorems of Euclid are still as valid as
they were over two thousand years ago. With
mathematics you know where you stand. Things are
either true or false and when we prove that something
1s true that’s the end of the matter. Or is it?

§1.2. Do Imaginary Numbers Exist?
People often ask “does God exist?” It’s generally
agreed that one cannot prove that there is a God. Some
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people talk about having faith and say that they believe
in God. Atheists believe that he doesn’t. Agnostics say
that you can’t tell, and leave it at that.

What has this to do with mathematics? One of
the themes of this book is to reflect on the similarities
between mathematics and religion. In terms of truth
you might think that they are poles apart. In
mathematics everything that is believed to be true can
be proved while religious truth is purely a matter of
belief. But things are not quite as simple as they sound.

Now this is a book about mathematics not
religion, so that if it should change your ideas about
religious belief that’s your own business. My main
purpose here is to show that there are many
mathematical truths that seem to be contrary to
intuition and that even the concept of mathematical
truth itself is not quite what you might have imagined
it to be.

The German mathematician Leopold Kronecker
(1823 — 1891) once said “God created the natural
numbers; all else 1s the work of man.” He meant that
the so-called “natural numbers”, the ones that we count
with, exist in an obvious way in the world around us.
But fractions, negative numbers and decimals are
artificial constructions.

Mathematicians began to become bothered with
existence of certain numbers in the 17" century when
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they made up some new numbers. Up to then it was
believed that you can’t have square roots of negative
numbers.

At this stage numbers were synonymous with
points on the number line. In the ‘middle’ of an
infinitely long line you have the number zero. To the
left are the negative numbers and to the right are the
positive ones.

5 4 -3 -2 -1 0 1 2 3 4

Whole numbers step out in both directions in
uniform steps and fractions, and more generally
decimals, fill in the space between them. To use the
correct mathematical terms we have the integers
represented by points made by equal sized steps and
rational numbers, and more generally real numbers,
fill up the number line.

There are certain facts that can be proved about
these numbers. One of these is that if you multiply two
negative numbers you get a positive one. And of course
if you multiply two positive numbers you get a positive
one.

It follows that negative numbers don’t have
square roots. If you multiply a number by itself the
answer will always be positive (or zero if you square

16



zero). Here’s something which was once considered to
be a true fact — but not any more!

In the 17" century, in order to solve certain
practical problems, mathematicians found it useful to
invent square roots for negative numbers. These were
called imaginary numbers because it was felt, useful
as they are, that they didn’t really exist. The square
roots of —1 were called i and —i, with the symbol ‘i’
being used to remind us that they are only ‘imaginary’
— they don’t really exist.

But how did they reconcile this with the fact that
if this imaginary number i is either positive or negative
its square must be positive. How could it possibly be
equal to —1? Well, who’s to say that this imaginary
number 1 must be either positive or negative? Can’t it
be neither?

Today we live in a complex world where the
simple axiom “everybody is either male or female” no
longer holds. Why can’t non-zero numbers be neither
positive or negative? But surely the point that
represents a non-zero number must be either to the left
or the right of zero. On a line there are only two
directions, left or right. That’s true, but in a plane you
can also go up and down. To accommodate these
imaginary numbers we need to go into two dimensions.

If we’re going to invent the imaginary number 1
we must allow it to combine arithmetically with the
17



ordinary real numbers, so that we must invent numbers
such as 2i and 3 + 2i. More generally we’ll have
invented numbers of the form a + bi where a and b are
ordinary real numbers. These are called complex
numbers. The name ‘complex’ doesn’t refer to the
level of difficulty but simply to the fact that these
numbers have a complex structure, being made up of
two parts. This diagram shows how every complex
number can be placed on what is called the complex
plane.

5-4_-3-217Ti1 2 345
] R

It might seem a cheat when asked to add the
numbers 3 and 2i and to be told that it is 3 + 2i. Is this
the question or is it the answer? In fact it’s both. It’s
not possible to simplify this answer. It is just like
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asking someone to divide 2 by 3 and being told that the
answer is % :

Doing arithmetic with these complex numbers is
not difficult. Toadd 3+ 2ito 5 + 7i we get 8 + 9i. And
(2 + 3i)(5 + 7i) = 10 + 14i + 15i + 21i%. Remembering
that i2 = —1 we can simplify this to 10 + 29i — 21 = -11
+ 29i. Division is a little bit trickier.

These complex numbers proved to be extremely
useful. Indeed modern electronics couldn’t exist
without them. But the philosophic question remains
“do these imaginary numbers really exist?”
Mathematicians used to struggle over such questions
but the modern mantra is “if it doesn’t exist then you
just invent it”.

So when faced with fact that parallel lines in a
plane don’t meet, mathematicians just invented new
points where they do meet and so created a new
geometry called the Projective Plane. There’s a sense
in which mathematics is just a game of make-believe!
But it has proved to be such a useful make-believe that
we don’t fuss about whether these made up entities
exist. It’s a non-question.

Many people say that God is just something
made up by people in order to explain the natural
phenomena such as thunder (that was before science)
or to make sense of their lives. Others say that God
existed long before man was capable of thinking about
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things. | leave it to you to make your mind up on that
matter. | just want to point out that many
mathematicians when they make up some
mathematical entity that proves to be useful they get an
uncanny feeling that they’re not inventing but rather
discovering something that was already there. In some
sense complex numbers existed before the world
began. If there’s an advanced civilization on some far
distant planet they will also have ‘invented’ complex
numbers in one form or another.

§1.3. Mathematics Contains No Facts

Mathematics is the subject par excellence when
it comes to logical foundations. Yet in another sense
mathematics isn’t about truth at all — certainly not in an
absolute sense. When we prove that the angles of a
triangle add up to 180° we think we’ve proved an
absolute truth about the real world. Not so!

Mathematics is not about absolute truth (if there
IS such a thing) but rather about relative truth.
Everything in mathematics is based on definitions and
fundamental assumptions. Take the case of the angle
sum theorem we’ve just mentioned. Quite apart from
needing to define angles and triangles and addition we
must accept the axioms on which the proof of the
theorem is based.

Euclid began by setting down some basic
axioms, or assumptions. Some of these were attempts
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at definitions, others were considered as “self-evident
truths”. Clearly, through any two distinct points there’s
exactly one straight line. You don’t need to prove it —
you can see that it’s obvious. If anyone is so obtuse as
to say they don’t agree with it you simply have to ask
them to put two points on a piece of paper and draw
two different straight lines between them.

But our grounds for accepting this axiom are
rather shaky. We’re arguing as a physicist might. We
carry out many experiments with points and lines on a
sheet of paper and are never able to construct two
straight lines between the same two points. I’'m not
belittling the scientific method, but if we allow it to
operate within geometry we may just as well go off and
measure lots of triangles and conclude the truth of the
angle sum theorem by experiment.

We might argue that light travels in straight lines
so a ray of light that begins at point A and is seen at
point B must have gone along a single path. Imagine if
the light had to make up its mind as to which straight
line to follow!

Unfortunately we now know that light doesn’t
always travel exactly in straight lines. The more
gravitation is around the more curved the path. And as
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for light not being able to make up its mind as to which
path to follow, even stranger things have been observed
in the laboratory since the advent of quantum physics.

Another fundamental ‘truth’ is that if we have a
straight line, and a point off that line, there’s exactly
one line passing through the point parallel to the given
line. It is on the basis of this that the Angle Sum
Theorem is proved.

Now experimental evidence for this ‘fact’ is very
strong. But remember that drawing lines on a piece of
paper is neither particularly accurate nor particularly
general. Perhaps two lines can be drawn, so close to
each other that you’d only notice the difference if they
were drawn with considerable precision and the sheet
of paper was many light years across. Indeed there’s
speculation that the geometry of space doesn’t quite
follow Euclid’s axioms.

How do mathematicians cope with all this?
Scrap thousands of years of Euclidean geometry? Not
at all! “There’s nothing wrong with Euclidean
geometry,” they say. “If the axioms hold then so do the
theorems. It’s the job of the cosmologist to decide
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whether the axioms are true for our universe, not the
mathematician!”

What mathematicians did do, when it was
discovered that this ‘fact’ didn’t follow logically from
the other axioms, was to develop non-Euclidean
geometries where there can be more than one line
through two distinct points, or none at all. So by the
time physicists began to doubt whether our universe
followed Euclidean geometry there was a mature study
of non-Euclidean geometry for them to choose as an
alternative.

§1.4. The Disembodied Angel

Mathematics isn’t about absolute truth.
Mathematicians create stories about imaginary
systems. Each one is logically consistent but it’s up to
the physicist, or economist, to select one off the shelf
to fit their observations.

If the universe were to disappear tonight, physics
and chemistry would be no more. Biology and
psychology would disappear, not to mention
economics. Of all branches of learning only
mathematics (and perhaps theology) would remain! It’s
a nice thought, though whether logic exists outside the
hard-wiring of the human brain is yet another question.
But certainly a mathematical truth shouldn’t be
dependent on physical observation. After all we must
think of the disembodied angels!

23



Years ago one of my colleagues, Alan
Macintosh, had to teach an advanced class in geometry.
To emphasise the fact that geometry can be studied
without recourse to spatial intuition he had a pair of
walkie-talkies (these day’s he’d use mobile phones).
An accomplice was positioned in the next classroom
with one handset and Professor Macintosh had the
other. A student from the class was chosen and was
given the job of explaining some geometrical concept
to the ‘disembodied angel’ in the other room. The idea
was that the ‘angel” was infinitely intelligent but had
no concept of space, living as she did in a purely
spiritual realm. The results were quite amusing.

Mathematics has reached the level of maturity
that it can now be taught to disembodied angels! That
IS, when studying it at an advanced level, students are
required to empty themselves of all their intuition
concerning number, space and even sets. The
fundament objects of study are to be considered as
undefined entities. We have to capture our intuition by
writing down our assumptions as axioms. They might
be self-evident to us but not to disembodied angels.
Both they and we accept these axioms and proceed
from there. At no time in the proofs of our theorems
must we fall back on intuition. Everything must
proceed using the tools of logic.

That’s not to say that intuition has no place in
modern mathematics. Mathematicians are not
machines that manipulate symbols mindlessly to create
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theorems. There’s an old joke that mathematicians are
machines for turning coffee into theorems but this
perhaps reflects the fact that coffee may help to
stimulate a mathematician’s intuition. What happens is
an interaction between intuition and logic. An intuitive
insight causes a mathematician to ‘see’ that such and
such must be true. He, or she (women are now quite
active in the world of research mathematics), will then
set out to prove the fact, using sound logic. Sometimes
they will fail, but their efforts will help them to see that
they were wrong. More often than not they will be able
to prove that they were right. Either way the struggle
towards a proof will strengthen their intuition.

For some laymen, the phrase ‘mathematical
research’ is an oxymoron. I am often asked “Hasn’t
everything in mathematics been discovered a long time
ago?” Well, mathematics may not be quite the oldest
profession but it comes close. It’s probably the oldest
academic profession.

Mathematics has been building for thousands of
years. And because it’s highly structured you can only
understand the more recent bits once you understand
the earlier bits. So all of the mathematics you learnt at
school, even at the most advanced level, would be a
couple of hundred years old. If you continued on to
university mathematics you might be brought up to the
end of the nineteenth century, with a couple of
exceptions, though you’d still learn only a tiny fraction
of what was known to that point.
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But mathematics has been producing new
theorems, even whole new branches, at an ever
increasing rate. Some years ago, before reviews of
mathematical papers went online, Mathematics
Reviews was putting out monthly volumes, each the
size of a small telephone book, that contained short
summaries of the more important mathematics papers
that had been published that month in research journals
around the world.

§1.5. Propositional Logic

So mathematics is founded on logic and uses its
tools to create proofs. What are the tools of logic? To
begin with we consider things called ‘statements’ or
‘propositions’. We could regard a statement as an
undefined entity but it helps to think of it as a sentence
for which it is meaningful to say that it is true or that it

1s false. Statements have things called ‘truth values’ —
TRUE and FALSE.

Not every sentence is TRUE or FALSE. “Come
here!” is a command, not a statement. But even things
that look like statements might just be pretending.
Consider the sentence: “THIS STATEMENT IS

FALSE”.
If 1t’s TRUE then it’s FALSE and if it’s FALSE

it must be TRUE. So it can be neither TRUE nor
FALSE. This doesn’t invalidate logic — it simply means
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that “THIS STATEMENT IS FALSE” isn’t really a
Statement.

The reason why “THIS STATEMENT IS
FALSE” can’t be considered a statement is because it
is self-referential — that is it refers to itself. A similar
situation exists if we have a collection of statements
that refer to other statements, but where the references
go around in a circle such as:

(1)
(1) Statement (2) is FALSE / \
(2) Statement (3) is FALSE

(3) Statement (1) is FALSE ~ (3) (2)

If any of these is TRUE, the next, around the circle is
FALSE.

If any of these is FALSE, the next, around the circle is
TRUE.

So the TRUE and FALSE tags must alternate,
which around a circle with an odd number of points is
impossible.

You might think that the recipe to avoid such
paradoxes is to insist that no statement is allowed to
refer to itself either directly or indirectly. But there are
instances where there’s no hint of self-referentiality
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and where we still get such a paradox. We’ll see such a
system in a later chapter. This shows that it’s very
difficult to define what is meant by a statement.

We represent statements by lower case letters p,
g, ... It’s just like algebra except that the symbols stand
for statements instead of numbers. The only property
of a statement that logic can deal with is its truth value.
Whether the statement is long-winded or amusing, or
contains a certain four letter word, lies outside the
realm of logic. So you can think of the variables p, q, r,
... as undefined entities having one of two possible
values T or F (shorthand for TRUE and FALSE).

Logic thrives on constructing complex
statements from simple ones, and then asking whether
the complex statement is true or false. It does this using
‘logical operators’.

The basic one is ‘not’. When we say ‘not p’ we
mean the statement ‘p is FALSE’. So if p is TRUE then
not p is FALSE but if p is FALSE then not p is TRUE.

For example, if p =2 + 2 =4 then
notp=-2+2=4".
Here p is TRUE while not p is FALSE.
Ifg="“3>9"thennotq="3<9".
Here g is FALSE and not g is TRUE.
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If g=“God exists” then notg = “God does not
exist”. In this case you must decide for yourself
whether p or not p is TRUE. We can’t have both
being TRUE and our logic insists that at least one of
them is TRUE. (There are other logics that logicians
study where statements may be neither, but
mathematicians are usually intuitive about our logic.)

Two statements p and g can be combined in
several ways: “and”, “or” or “implies”.

The complex statement p and @ means what it
says — we assert that both of them are TRUE. We can
express this to a disembodied angel by means of a table
that sets out the truth value of p and q under all four
combinations of the truth values of p and g separately.
Such an angel doesn’t need to have any concept of what
‘TRUE’ means.

p and q
Ip g—>
T
F

F

F
F

M|

Sometimes we say p but not g. We might say
“mathematics 1s interesting but economics is not”. Here
‘but’ just means ‘and’, at least at the basic level of
logic. There may be overtones of surprise or contrast
but such subtlety is beyond basic logic.
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So if p is “mathematics is interesting” and g =
“economics is interesting” then what we’re saying can
be encapsulated in symbols as p and not g.

Or we might say p or g. Here our intuitive grasp
of the word ‘or’ can more or less define what we mean.
But there’s some ambiguity. There is the exclusive ‘or’
and the inclusive ‘or’.

At a party, if we’re offered a glass of wine, and
are asked whether we want red or white, our host would
be quite taken aback if we said “both”. Here the word
‘or’ is used in a polite sense, that is, it means the
exclusive ‘or’. But mathematicians are impolite. We
reserve the right to say “both” — perhaps not in a social
situation but in our mathematics. When we say “x = 0
or y = 0” we include three possibilities:

(1) x is zero but y is not,

(2) y is zero but x is not,

(3) they are both zero.

Of course there are situations when we need to be
exclusive, but then we’d have to spell it out: p or g and
not(p and q).

For the benefit of the disembodied angel we
should simply set out our meaning in a table.

porg
lpgo|T|F
T T|T
F T[F
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The third logical operator is rather more
confusing: “if p then q”. We call this ‘implication’ but
we don’t mean to imply any causal connection between
the two — simply a connection between their truth
values.

Let’s see how far our intuition might go to
defining implication. In the case where p is TRUE and
q is TRUE then of course we want “if p then g” to be
TRUE. True statements imply true statements.

And in the case where p is TRUE and q is
FALSE we want “if p then q” to be FALSE. True

statements don’t imply false ones.

What do FALSE statements imply? We may be
tempted to say “nothing”. In other words we may think
we want “if p then q” to be FALSE whenever p is
FALSE. But do we? Look at the table that would result
from that decision.

Ip g |T|F
T TI|F
F FIF

Our disembodied angel would say, “This is the
same table that you gave me for ‘and’. Do you mean
that “if p then q’ is just a complicated way of saying ‘p
and q’?”
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Rather than try to tease anything more out of our
intuition we’ll simply present the correct table and be
done with it. As Humpty Dumpty said in Alice’s
Adventures in Wonderland, “When | use a word it
means just what I choose it to mean.” Just accept that
in mathematics “if ... then” means this.

if p then g
lpgo|T|F
T T|F
F T|T

But surely it’s wrong, surely, to have a FALSE
statement implying anything! There’s a technical
explanation that doesn’t become apparent until we
meet quantifiers. At this stage just pretend that you’re
a disembodied angel and simply accept the table.

§1.6. Quantifier Logic

Here we move up to the next level of logic. It’s
going to involve some symbols so perhaps you’re ready
to skip to the end of the chapter. By all means, if you’ve
got symbol phobia, then do just that. But let me
encourage you to persist. Just remember that symbols
are just short words and have to be read more slowly
than most text.

In a short while we’ll encounter the sentence

X —y?= (X +y)(X—Y).
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Perhaps you might call it an “equation” but equations
are really sentences. They have verbs and nouns. The
verb in an equation is the symbol “=" that is shorthand
for “equals”. The nouns in the above sentence are X and

y.

Shortly we’ll we introducing the strange symbol
‘V’. Roughly speaking it’s shorthand for ‘all’. We
could write Vcats, meaning ‘all cats’. So a complete
sentence could be: Vcats are cute.

More precisely, V is shorthand for ‘for all’. What
follows 1s a variable, so ‘X’ stands for ‘for all X’. Now
on its own this doesn’t make sense. It must be followed
by a statement about x. So Vx[x is cute] asserts that all
X’s are cute. But not everything is cute. We need to
limit the Xx’s to come from some ‘universe of
quantification’. We don’t normally incorporate this
into our notation but we have to have some sort of
context that implies what this is. For example if we
were discussing arithmetic we would be assuming that
X is a number.

Perhaps you don’t like symbols and would prefer

to have everything spelt out in words. For example we
could avoid using symbols and write the statement:

VXVY[( = y* = (X +Y)(X —Y))
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as ‘if you take any two numbers and subtract the second
number squared from the first number squared you’ll
always get the same answer as if you had added the sum
and difference of the original two numbers and then
multiplied the sum by the difference.” Do you really
think that this makes it any easier to understand?
Symbols are used in mathematics not to scare away the
uninitiated but to make life easier.

The quantifier V is called the ‘universal
quantifier’. The other quantifier is the ‘existential
quantifier’. It is written 3 and is shorthand for ‘for
some’. So X means ‘for some X’.

If the universe of quantification consists of all
human beings we might write 3x[x can run a mile in
under 4 minutes] to mean that some human can run a
four-minute mile]. In fact there are quite a few possible
x’s — the x does not have to be unique.

In todays world this is a TRUE statement, but in
the early part of the twentieth century it was FALSE.
Of course the truth of a statement shouldn’t be time-
dependent. We should be more precise in defining the
universe of quantification. If it is the set of all humans
alive in 1920 the statement is FALSE, but if it is the set
of all humans alive in 2020 it is TRUE.

We could also consider the statement:
3x[x can run a mile in under 3 minutes].
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We could also consider the statement:
3x[x can run a mile in under 3 minutes].

If the universe of quantification is the set of all humans
who were alive in 2020 this would be FALSE. If it was
the set of all humans who have ever lived or who will
ever live in the future we can’t decide whether this 1s

TRUE or FALSE.

If the universe was the set of all mammals alive
today then it is most certainly TRUE as there are
animals in the cat family wo can run a mile in well
under two minutes.

We might write 3x[x + 2 = 0], meaning, if our
universe of quantification is the universe of all
numbers, that there is some number which when added
to 2 gives zero. There is only one such number, namely
2.

You might be scared of these two strange
symbols that are used to represent quantifiers. But
quantifiers themselves are things you use in everyday
speech. It’s just that you probably don’t know the
technical jargon for them, or the symbols that represent
them.

Without “quantifiers” there would be no
mathematics. Come to think of it, without quantifiers
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our everyday conversation would be at the level of a
caveman’s grunt.

“Children of today don’t know what hardship
is”. Here we’re not referring to a particular child but to
children in general. “Someone’s taken my icecream out
of the fridge!” There you have the two types of
quantifier. You use them all the time!

In  mathematics we mostly make general
statements involving variables. It wouldn’t be edifying
to come across a theorem that said “3456 + 9876 =
9876 + 6543”. It’s not a theorem we’d use very often!
On the other hand there is a theorem that says:

X+y=y+Xx

Now notice that here we have two variables x
and y. What’s implied by this is that we can substitute
any number for x and any number for y and we get a
true result.

52-42=25-16=9=9x1=(5+4)(5-4).
92 -72=81-49=32=16%x2=(9+7)(9-7).
102-12=100-1=99=11x9=(10 + 1)(10 - 1).
32-52=9-25=-16=8x(-2)=(3+5)(3-5).

Such a theorem is much more useful than a

specific one without any variables. It represents
infinitely many individual true statements all at once.
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To make it clear that we mean for x and y to
represent any number we can use the universal
guantifier and write:

VXVY[x +y =y +X].

But mathematicians get lazy and often leave out
universal quantifiers. Any free variable in a statement
IS assumed to be bound by the universal quantifier.

Things get interesting when we get mixtures of
quantifiers. Suppose xLy represents some statement
involving two variables. Is there any difference
between Vx3y[xLy] and Jy3x[xLy]? Can quantifiers be
swapped around just like numbers in a multiplication
problem?

Well, suppose that L represents “loves” so that
XLy means ‘x loves y’. If x = your mother and y = you,
then hopefully xLy is TRUE.

Now we need to specify our universe of
quantification. Let’s make it as general as possible as
consisting of all beings, alive or dead, who are capable
of loving. Consider what statements you can get by
putting quantifiers in front of xLy.

To say VxVy[xLy] would be to make the rather
optimistic claim that everybody loves everybody. At
the other extreme is the cynical claim that
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Ix3y[xLy].Somewhere, somebody loves somebody.
The world is not totally devoid of love.

What about mixtures of universal and existential
quantifiers?

Vy3ax[xLy] says that for all y there is somebody
X who loves them. Nobody is unloved. I’'m sure you
would agree that is, rather weak, statement is TRUE.

But swap the quantifiers around and we get:
IxVy[xLy]

This is almost the theological statement that God
exists, for it asserts that there exists a being who loves
everybody. You may believe that this is FALSE, but
even if, like me, you believe that it is TRUE you must
admit that it’s a much stronger statement than
Vy3ax[xLy].

It’s amazing! You made it to the end of the
chapter! It wasn’t quite so readable as Alice’s
Adventures in Wonderland was it? The difference is
that Lewis Carroll was content with throwing
fragments of logic around in his delightful story. My
aim is more ambitious. | want to take you on a real
mathematical journey. The stories and poems between
the chapters are just resting places.
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And 1 hope you weren’t put off by all the
symbolic expressions. The secret is not to read
mathematics as you’d read a novel. When you come to
a symbolic expression you need to slow down and
examine it symbol by symbol. It’s a well-known fact
that when reading English prose your eye can easily
ignore a spelling error. You read whole words and if
the word is mispelt you may not even notice. (I bet you
didn’t even notice that “misspelt” was missing an “s”.)

Anyway, your brain now needs a rest. That’s the
reason for the following Humpty Dumpty poem.
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A POEM: HUMPTY
DUMPTY

There existed an egg who sat on a wall,

And the wall being short implies this story is tall.

Now if that fat egg had had a great fall

Or slipped off the top, but not jumped, then not all
The king's horses and all the king's men,

If they worked through the day and the evening, then
They could not succeed if and only if when

They attempted to put Humpty together again.
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2. THE IMPOSSIBLE

§2.1. Nothing is Impossible!?

It’s impossible! It can never be done! Dangerous
words! How often has the short-sightedness of man
placed limits on what can be achieved?

Man will never fly in a heavier-than-air machine
and certainly will never stand on the moon. Total
‘impossibilities’ yet we’ve seen them come about.
Computers will never be able to play a game of chess
to grand-master standard. Yet it has happened.

But of course some things are eternally
impossible. As children we grappled with the idea of
the impossible. '

“Bet there’s
nothing God can't
do.”

“Bet there 1s.”

“What, then?
Bet you three
marbles you can’t think of something God can’t do.”

“He can’t make 2 plus 2 make 5.”

“Yeah, but that's not possible. I mean God can
do anything that's logically possible.”

“So he could lift up the world?”

“Sure, he could even lift up the sun with his little

'99

finger!
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“Well then, is he able to find something so big
he can’t lift it?”

“But that’s impossible.”

“No it’s not. I can easily find something so big
that I can’t lift it, so why can’t God?”

Now of course there’s nothing impossible about
something being logically impossible. We can all make
up problems that have no solutions. And if a problem
1s impossible it’s important to know that, otherwise we
can waste a lot of time.

This book is about a lot of impossible things. The
more important of them have helped to delineate the
boundaries of rational thought. Because they involve
things close to the limits of human reasoning we may
from time to time look over the fence into philosophy,
but our feet will stay firmly on the side of logical
thought as we dabble in the mathematics at the edge of
the rational universe.

§2.2. The Domino Puzzle

How are we able to prove
that a problem has no solution?
The most obvious way is to
check through, and eliminate,
every possibility. But how can
we prove that something is
impossible if there is an
enormous number of possibilities? Get a computer to
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do the checking? But what if there are infinitely many
possibilities?

The following puzzle involves a huge, but finite,
number of possibilities, though it could easily be
adapted to one with an infinite number.

Take 31 dominos and place them on a
chessboard (each one covering two adjacent squares)
so that the two squares that remain uncovered are at
diagonally opposite corners. At first sight the following
appears to be well on the way to a solution but closer
inspection reveals that it can’t be completed.

That doesn’t prove it is impossible of course. It
may simply mean we started wrongly. But what an
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enormous number of possible ways of starting we’d
need to check!

We might try unsuccessfully for quite some time
and declare in disgust that “it’s impossible” but the
nagging thought would remain, “maybe just one more
try will do it”.

Yet it is indeed impossible. You can take that as
a challenge if you wish, but you’re really wasting your
time. It’s known to be impossible, not because many
have tried and failed and not because a computer has
worked through every conceivable possibility. It has
been proved to be impossible. And the proof involves
a clever but exceedingly simple idea.

Use a chessboard pattern of black and white
squares. Each domino must, of course, cover one black
square and one white one. The 31 dominos therefore
cover the same number of black and white squares and
so the two remaining squares must be of opposite
colours. But diagonally opposite corners of a
chessboard, as every chess player knows, have the
same colour. A contradiction is reached if a solution
were to exist. So of course no solution could possibly
exist.
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§2.3. Proof By Contradiction

Not every proof of impossibility is as short and
transparent as this one. But they all rely on the simple
idea that any assumption that leads to a contradiction
must be false.

We begin by assuming that whatever we’re
trying to prove impossible is in fact possible. We then
attempt to use logic to reach a contradiction, that is,
something which is both true and false. If we succeed
in producing this nonsense we know that our
assumption of possibility must be false and we’ll have
proven impossibility.

Some people get worried about the validity of
this type of reasoning. “You can’t make assumptions in
proofs.” It’s true that if you’re allowed to assume that
what you’re trying to prove true is true, then naturally
you’ll succeed all the time, no matter what you’re
trying to prove.

Assume that the moon is made of green cheese.
Therefore if you land on the moon and dig up a sample,
it will be green in colour, and will have a strong cheesy
flavour. Therefore the sample will be green cheese.
And if you repeat this experiment at numerous other
locations on the moon you must get the same result.
Hence the moon is made of green cheese! But of course
that proves nothing. We might get away with such a
fallacy if our chain of arguments is so long that our
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listener forgets what we’d assumed in the first place.
But fallacious reasoning it is, nevertheless.

So of course it is fallacious to assume what
you’re trying to prove. But that’s not what we’re doing
in a proof by contradiction. In such a proof we’re
assuming that what we’re trying to prove is false, or
that the so-called impossible is in fact possible. And
that’s a totally different thing.

Proof by contradiction is not some esoteric rule
thought up by logicians or mathematicians. It’s just
ordinary common sense that we use all the time. “You
couldn’t have put the milk away because it’s still on the
bench.” Analysing the logic behind this assertion we
find that it’s a proof by contradiction.

Theorem: You didn’t put the milk away.

Proof: Suppose that you did put the milk away.

Then the milk is in the

refrigerator. ﬂl_l_l_l_[:
[Here there’s the unspoken
assumption that no-one else has
been around to take it out again.]
But the milk is still on the bench
and so is not in the fridge.

[That we are talking about the
same bottle is another unspoken -
assumption.]

Contradiction! Therefore you did not put the milk
away.
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You, the accused, might still dispute this
argument. Nothing in life is quite as clear-cut as in
mathematics. But the only way you could validly attack
it would be to draw out and dispute one or other of these
unspoken assumptions. The underlying logic of the
argument itself is perfectly sound.

Impossibilities are everywhere, not just at the
edges of rational thought. Before we journey out to the
uttermost parts of the rational universe we’ll look at a
number of other perfectly ordinary impossibilities.
Some are quite famous in the history of mathematics.
Others are mere curiosities. Our purpose in examining
them is to help us feel quite at home with proof by
contradiction because that’s the tool we’ll need on our
journey.

82.4. The Square Root of 2 is Irrational

An irrational number isn’t one which is crazy. It
simply means one which cannot be expressed exactly
as a ratio of two whole numbers, like 2/3 or 22/7.
Ratios have a geometric significance. The Greeks were
able to divide any given line in any ratio of two whole
numbers.

For example to find the point which is two thirds
of the way along a given line segment, you construct a
second line from one end of the first and mark off three
equal lengths (with a compass, of course — using
rulers to measure was considered unacceptable).
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The third point is joined to the other end of the
original line segment and other lines are drawn parallel
to it as in the following diagram. If you remember from
school how to draw parallel lines using ruler and
compass, well and good. If you’ve forgotten, it doesn’t
matter. There is a way.

This can be easily adapted to construct a line segment
that is any rational multiple of the one given.

But the Greeks soon learnt of a theorem that’s
associated with the name Pythagoras. The square on the
hypotenuse is equal to the sum of the squares on the
other two sides. Construct a square (which the Greeks
could do easily, using their rulers and compasses) and
by this famous theorem the length of the diagonal of
the square must be V2 times the length of the side.
(Diagonal squared = 12+ 12=2))
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Since the only numbers that existed at that time,
or rather the only numbers that had been invented, were
rational numbers, it was obvious that V2 had to be the
ratio of two integers. It simply remained to find the two
integers.

The rational number 10/7, when squared, gives
2.04..., which is close to, but not exactly equal to, 2. A
better approximation is given by 1393/985. Its square
15 1.9999989... very much closer. Try 8119/5741.

Then came the embarrassing truth. They
discovered an argument that demonstrated the
impossibility of finding such integers. No rational
number gives exactly 2 when squared. So here was a
line which had no length! That can’t be! To get around
this difficulty, new numbers had to be invented.

Theorem: V2 is irrational
Proof: Suppose that, on the contrary, it is rational.
(Here’s a classic Proof By Contradiction.)
Let m and n be the two whole numbers whose ratio,
when squared, gives exactly 2.

mj 2
Then [nj =2

2

. m .
But this means that = 2 and so m? = 2n?, that is, m?

must be exactly twice as big as n?.
Now consider the number of factors of 2 which
divide these numbers. However many factors of 2 there
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are that divide n, clearly exactly double that number
divide n? In fact the number of factors of 2 in any
perfect square, n? or m?, must be even. But that means
an odd number of factors of 2 divides 2n? and an even
number dividing m?. This can’t happen if they’re equal!

This contradiction rests firmly on a single
assumption — that V2 is rational. This assumption
cannot stand. The square root of 2 must be irrational.

Now a professional mathematician might argue
that this proof relies on the Unique Factorisation
Theorem for whole numbers: There is essentially only
one way of factorising a whole number and the number
of factors of 2 will always be the same. He will argue
that there is a more basic proof that avoids the need to
assume the Unique Factorisation Theorem.

However | have found that most people find it
harder to follow than the above proof. Remember that
I’m not trying to develop number theory but rather to
explain the concept of Proof By Contradiction.

82.5. It is Impossible to Trisect a Given
Angle by Ruler and Compass

One of the famous classical impossibilities
concerns ruler and compass constructions. This type of
geometric construction was a highly developed art
form in the time of the ancient Greeks because for
them, arithmetic was built on the foundation of
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geometry. Ruler and compass construction was as
important a tool then as the calculator is today.

The ruler wasn’t used to measure lengths. In fact
any straight edge would do. What the Greeks had
against measurement was that it wasn’t exact. No
matter how fine the divisions, a length may fall
between two of them and the human eye is called upon
to estimate.

The Greeks were intoxicated by perfection. Any
method had to be theoretically exact. And this they
could achieve with straight-edge and compass — at least
for many problems.

They could, for example, bisect any given angle.
Most school pupils learn how to do this. With the
compass point on the vertex of the angle, draw an arc
cutting the two arms of the arc at points A, B. Now with
any convenient radius (but the same for each) draw
intersecting arcs, one with A as centre and one with
centre at B. Joining the intersection of these arcs to the
vertex of the angle exactly bisects the angle.

A

Is
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The method is mathematically exact. Using
theorems of congruent triangles one can prove that the
two angles created at the vertex are equal, each exactly
half the original. Of course to do it in practice, no
matter how carefully you carry out the construction, all
sorts of little errors creep in. But the method is
mathematically exact.

Lines of any given length can be bisected by a
similar construction. Here the centres of the arcs are the
endpoints of the line.

What was really tantalising was that although
lines can be trisected (3 equal pieces) there appeared to
be no method for trisecting angles. This really
disturbed them because it was obvious to them that it
could be done. Why should there be any difference?
Aren’t lengths and angles just different geometric
manifestations of the same numbers?
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Much effort went into looking for such a
construction without success. All was wasted effort.
Many, many centuries passed before a proof that such
a construction is impossible was discovered. It’s too
technical to present here, but it’s worth pointing out
that, like many proofs of impossibility, the
breakthrough came by cleverly converting the problem
to one involving whole numbers.

In the trisection case, there’s a number which
can be associated with any ruler and compass
construction called the “degree of the corresponding
field extension”. Never mind what that means. Suffice
to point out that it starts at 1 and with each stage in a
ruler and compass construction it either remains the
same or it doubles. So only exact powers of 2 are
possible: 1, 2, 4, 8, 16, ...

But it can be shown that a method which trisects
a 60 degree angle, must be capable of producing a field
extension whose degree is exactly 3. Clearly 3 is not a
power of 2 and so we get a contradiction if we assume
that angle trisection is always possible.

82.6. Scribbles

Draw a scribble. By this | mean a continuous
line which crosses itself many times and ends up where
it starts. Oh, and you are not allowed to pass through a
previous crossing.
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You’ll have a number of crossings where two
parts of the scribble cross over. Start at any crossing
you like and number them in order: 1,2,3, ... When you
visit a crossing you must give it a second number.
Continue until all crossings have been given two
numbers.

Now a double crossing is one where one of its
two numbers is double the other and a triple crossing
IS one where one of its numbers is three times the
other,. There's no difficulty in producing double
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crossings. This scribble has two of them: 7, 14 and 9,
18. But there are no triple crossings.

Can we create a scribble which includes at least
one triple crossing? It might have to be an exceedingly
complicated scribble with millions of crossings, one of
which might be a crossing labelled as (123123,
369369).

The problem can’t be solved. There is no
solution. You might like to try to find one just to get
the ‘feel’ of it, but don't try too hard because the puzzle
is really quite impossible. But how can we be sure of
this? After all there’s no limit to the complexity of the
scribble so it’s just not possible to check all cases.

82.7. Why No Triple Crossings?

Suppose it can be done. (Notice that we’ve
started in the usual way for a Proof by Contradiction.)
Then we’d have a (k, 3k) crossing somewhere. We visit
when the count is k and revisit when the count has
reached 3k.

Question: How many times will we pass a crossing
between these two visits?

Answer: An odd number of times.

This might seem wrong because the difference
between k and 3k is 2k which is even. But think again.
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How many numbers are there between 4 and 12? Do
you think there are 8, because 12 — 4 = 8? No, there are
only 7 numbers between 4 and 12. They are 5, 6, 7, 8,
9, 10 and 11. When we subtract 4 from 12 and get 8
we’re counting the one-unit sections between 4 and 8.
But the number of dividing points is never equal to the
number of sections. It’s always one more if we’re
counting both ends and or one less if we’re not (as in
this case).

4 5 6 7 8 9 10 11
sections 1 2 3 4 5 6 7
interveningnumbers 1 2 3 4 5 6

Always, between the two visits to a (k, 3K) triple
crossing, there are 2k sections and so 2k —1 visits to
other crossings. So the answer to the question is “an
odd number of times”.

Second Answer: An even number of times.

Before you start pointing out that this contradicts
what we concluded earlier, consider the supporting
argument.

If you start at any crossing in a scribble and
move around till you revisit that crossing you’ll have
traced out a smaller scribble. Those parts you haven’t
traced will also be a smaller scribble. What you’ll have
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done is to decompose the original scribble into two
simpler ones, linked at the crossing you started with.

1,10

You can think of one of these smaller scribbles
as being the boundary of a region and the other scribble
as being a closed path (‘closed’ here just means that it
ends where it starts) which cuts across the first scribble
in a number of places. Now because of the principle
that “what goes in must come out” (this must hold
because the scribbles don’t have any free ends), the two
smaller scribbles must cut each other in an even number
of places.

So when you go from a (k, 3k) triple crossing at
visit k, until you revisit it at visit 3k, you’ll have passed
through an even number of crossings.

But wait a minute, we've overlooked places
where the scribble that’s traced out on this journey may
cross itself. As well as the even number of places where
the two scribbles cross we must add the places where
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the first scribble crosses itself. And couldn’t that be an
odd number?

Yes, of course. In the above example the solid
line and the dotted line are the two smaller scribbles
that together make up the whole scribble. Now you can
see that the solid line cuts itself just once. So doesn’t
that destroy the evenness of the number of intervening
crossings?

Not at all. Remember, we’re not counting
crossings but visits. So, when the scribble we’re
following crosses itself, that counts as two visits.
Including these self-crossings merely adds an even
number to an already even number.

So for these reasons the number of visits to
crossings between the first and second visits to our
mythical triple crossing is even.

The fact that we previously convinced ourselves
that this number is odd, and the fact that no number can
be simultaneously odd and even, completes the
argument. If a triple crossing were to exist then we’d
have a contradiction, and once even a single
contradiction is allowed to creep in, others follow: odd
= even , true = false, black = white and the whole
edifice of knowledge crumbles to dust.
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You may be getting the impression that the
difference between odd and even is at the heart of every
proof of impossibility. This is certainly true in many
cases. However we’ll now see a few examples where
the impossibility uses other methods.

§2.8. The Utilities Puzzle

Imagine that you have three houses, each of
which has to be connected to the three utilities of gas,
water and electricity. Now the catch is this. Pipes and
wires are not allowed to cross over one another. Why
this should be is never properly explained in the puzzle.
Perhaps the world is a sort of two-dimensional
‘Flatland’.

GAS WATER ELECGURIGITY

It’s very easy to get a solution that almost works,
where only one pipe or wire remains to be installed. But
no amount of ingenuity can come up with one that
works completely. Try as you might, no matter how
ingenious and how contorted you make the routes,
nothing seems to work.

Now you might be a pragmatist and conclude,
after a bit of fruitless experimentation, that it’s
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impossible. Or you might accept the authority of the
experts and say that if nobody has managed to find a
solution after all these years then it must indeed be
impossible.

But if you’re happy to leave it there then you
don’t possess mathematical curiosity. “Perhaps one
day, a solution might be found.” Unless the
impossibility has been ruled out by a water-tight logical
argument the problem would continue to tantalise
mathematicians. But just such an argument has been
found and a proof of impossibility can produce as much
excitement in a mathematician as a solution would
have.

The key to proving the impossibility of solving
the Utilities Puzzle lies in counting. We suppose that a
solution exists and count the number of points (well
that’s easy — there are 6 points, 3 houses plus 3
utilities), the number of connecting lines (that’s casy
too — there’s a pipe or wire from each of the 3 houses
to each of the 3 utilities, that’s 9 altogether) and the
number of regions enclosed by the lines.

For example if we take the above attempt at a
solution and remove the incomplete pipe from the
bottom house to the waterworks the number of regions,
including the outside, is four.
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GAS WATER ELECTRIGCITY

How many regions will there be in a solution to
the puzzle? We might say that there would be 5, one
more than in the above because a ninth line would split
one region into two. But remember that there’s no way
of successfully putting in a ninth line to the above
picture. If there is a solution we’d have to start from
scratch.

So how on earth can we count the number of
regions until we’ve drawn the picture? And if the
problem is impossible we can never draw the picture.
Ah, but there’s another, sneakier, way to do this.

You see, there’s a connection between these
three numbers which holds for any map on a plane
surface. Itis called Euler's Formula:

V+F-E=2
Here V is the number of ‘vertices’ (that just means
points), F is the number of ‘faces’ (that just means
regions) and E is the number of ‘edges’ (or connecting
lines).

Usually this formula is quoted for solid figures,
like cubes and pyramids, which are bound by a number
of flat faces, and where each face is bounded by a
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number of straight edges. The technical term for these
solids is ‘polyhedra’. They’re the three-dimensional
analogues of polygons.

A cube has 8 vertices, 6 faces and 12 edges and
8+ 6—12=2,so it works for a cube. In fact it works
for any polyhedron. But what’s this got to do with our
two-dimensional problem? It’s amazing the way a
mathematician is able to change the subject. Talk to
him (or her) about one thing and the next thing you
know he or she is talking about something completely
different and apparently unrelated.

But the true mathematical approach is to draw
together the original problem and the apparent ‘red
herring’ and to show that they’re very much related
after all.

Take a polyhedron, for example a cube, and
remove one of the faces. Now stretch the rest out so
that it lies flat. You might need to use your imagination
for this because a cardboard cube is not sufficiently
elastic. The edges of the faces may no longer be
straight. That doesn’t matter. The important thing is
which point is joined to what. Nothing in that
department has changed; only the layout which now
lies in a plane.
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What we’ve produced is a ‘map’ with vertices,
edges and faces (except that the faces would now be
better described as regions). The numbers of vertices,
faces and edges has not changed throughout this
imaginative flattening. What about the face we
removed to open it all up? Well that’s just become the
outside region of the map.

It’s because V + F — E = 2 works for maps that
it also works for polyhedra. But why does it work for
maps? Well can we put that one on hold for a while.
The best way to convince you is by a method called
‘Mathematical Induction’ and that’s something we’ll
talk about later. Just be a good mathematical reader and
accept it as fact. (Of course a really good mathematical
reader will say “well, just for now, but eventually I
want to know why”.) But to give you enough faith to
keep you going, draw a few maps and check it out. A
few confirming examples is no proof, but they’re
comforting nevertheless! Well back to our supposed
solution to the Utilities Puzzle.
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We know that V = 6 and E = 9. We counted
them. We have to have that number of vertices and that
number of edges in any solution to the problem.
Conceivably the number of faces, or regions could
vary. But no. Euler's formula says that

F=E+2-V=9+2-6=5,

So, indirectly, we can infer that any solution to
the puzzle must have exactly 5 regions. Where does
this get us?

The question to ask at this point is “what is the
average number of edges per face?” Why this question?
What led to asking that? That’s where mathematicians
get really sneaky. Often it’s just a matter of asking the
right question and it all falls out. So how does a
mathematician develop the art of asking just the one
question that will unravel a problem?

The answer is two-fold. Firstly, a
mathematician, thinking about a certain problem,
develops his or her intuition so that the ‘right’ question
just pops out. It’s a common experience in the trade that
after getting nowhere with a problem a mathematician
puts it away and “sleeps on it”. Then suddenly the
answer, or at least the right question which leads to the
answer, comes as if from nowhere. He might be on a
bus, she might be out walking. The problem is miles
away. Then like a bolt from the blue, it comes.

66



The other explanation for why mathematicians
seem to have this uncanny ability to hit on exactly the
right question first time, is that they generally don’t.
You see, in practice a mathematician might ask dozens
or hundreds of questions about the problem in hand.
Scores of screwed up sheets of paper might litter the
floor until finally “eureka” — the right one comes.

Now you don’t think a mathematician is going to
unravel all those crumpled-up pieces of paper and write
up the whole investigation, false starts and all — of
course not. You’d never want to read them and nor
would any other mathematician. Only the right
question, the right way of looking at the problem, gets
into print. It appears to the reader that Euclid, Euler or
Einstein just sat down one day and wrote a theorem as
effortlessly as, we’re told, Mozart wrote his music —
flawless in first draft. All the pain and tears and sweat
and sleepless nights and countless cups of coffee and
conversations are hidden. All that appears is the
finished product.

By the way, while we are talking about Einstein
| should point out that, unlike what many people
believe, he wasn’t a great mathematician. He was a
great theoretical physicist — probably the greatest that
ever lived. And he was he had a good knowledge of
mathematics, otherwise he couldn’t have applied it so
well. But frequently he had to ask his colleagues about
some difficult mathematical technique. And he never
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discovered any new mathematics. But a great
theoretical physicist, yes.

Mathematicians are not the only ones who
remove their scaffolding before displaying their
finished edifice. But probably the process by which
they achieve their results is less well understood than
most.

What has all this to do with the problem in hand?
Not a great deal. This was a real digression. If you
remember, we had a map with 6 vertices, 9 edges and
5 regions. Well, we supposed we had such a map,
because a solution to the Utilities Puzzle requires such
a map to exist. And we were about to ask the RIGHT
question. And this is ...

What is the average number of edges per face?

Easy! With 9 edges and 5 faces or regions the average
number of edges per face is 9/5 = 1.8. Whoops! That's
a bit on the low side! Think again!

Silly us. We forgot that each edge (boundary)
separates two regions. Imagine that each edge is neatly
sliced lengthwise into two half-edges. Now each half-
edge is attached to only one region. Start again.

We have 9 edges, that’s 18 half-edges, to be shared
among 5 regions. That’s 18/5 = 3.6 edges per face on
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average. That’s better. But maybe still a wee bit too
small.

Each face has to have at least four edges. Why
not 2? Well, that would mean two edges connecting the
same two vertices and the puzzle specifies only one.
Why not 3? Well a closed path has to alternate between
utility and house. Three edges just wouldn’t work.

So if 4 is the smallest number of edges
surrounding any one face then the average must be at
least 4? An average below 4 is just not possible. In fact
it’s impossible. Yet that impossible state of affairs is
forced upon us if we assume that a solution exists.
Therefore no solution can exist.

You see the infinitely many possibilities can be
captured by a little piece of elementary arithmetic that
in the end depended on the undeniable fact that 3.6 is
less than 4. And all because we asked the right
question!

§2.9. Is it possible to get “GODEL”

from “LODGE”?

It would be understandable if you felt that you’d
have enough impossibilities for now. By all means skip
to the next chapter, taking a detour via the radio play
There Is No Time. But if you’re a glutton for algebraic
punishment then read on.
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The word GODEL (the logician whose work
shook the foundations of mathematics to the core in the
1930°s was actually Gddel, but we’ll drop the umlaut
over the “0”) and the word LODGE use the same
letters, so a simple rearrangement will do the job of
getting GODEL from LODGE.

But suppose that the five letters are written on
five cards and arranged in a row to spell LODGE, and
suppose that a rule is imposed on how the cards are to
be rearranged. Suppose that we’re only allowed to
move the middle card to either end, moving them up to

close the gap. If that is all we’re allowed to do, can we
still get GODEL from LODGE?

This is one of
many puzzles that
involve permutations,
or rearrangements.
The Rubik’s Cube™ is
perhaps the most
famous, and probably
the most complicated.
There is  another
puzzle which was in
vogue many years ago,
called the “Fifteen Puzzle”. It consisted of fifteen small
square tiles that could slide around in a 4 by 4 square
frame.
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With a permutation puzzle there are a number of
pieces that can be moved and one or more possible
moves that are permitted. In most cases the restrictions
as to what rearrangements are allowed are
automatically imposed by the engineering of the
puzzle. In our LODGE-TO-GODEL puzzle, however,
we’ve artificially imposed a restriction. Well, this

puzzle is a pretty easy one to solve:

L O D

DL O

O O O
[T]
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ODGEL

GODE|L

Not very interesting. (If you want a harder
challenge, try converting LEDOG to GODEL by the
same rules.)

But suppose we change the rules. Under these
new rules there are three basic moves:

move description effect on
LODGE
L take the left card and | ODGEL

transfer it to the right
R take the right card and | ELODG
transfer it to the left
V reverse the order of the | EGDOL
cards
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Using these new rules, can we get from OGLED
to GODEL? With a bit of experimenting we see that we
can:

OGLED — ODELG (move L) —» DELGO (move L)
— OGLED (move V).

Now, can we get from LODGE to GODEL? The
answer is “NO”. It is IMPOSSIBLE. But how can we
say this? There are infinitely many possible sequences
of L, R and V. Have we tried them all? Of course not,
yet we can prove that it is impossible!

To see this, first observe that we can do without
R, because R is the same as doing L four times, which
we write as L4 Anything that can be achieved using L,
R and V can be achieved using just L and V alone.

Next, it is obvious that doing L five times brings
us back to where we were. We write the operation of
doing nothing by the symbol I and so we write L° = I.
Similarly V2 = 1. Reversing the order twice in a row
gets us back to where we started.

We can write a sequence of moves as a product
of powers of L and V, but we only need powers of L up
to 4, and we don’t need any powers of V, other than V*
which, of course, is just V.

Suppose you came up with a recipe for
transforming LODGE into DOLEG such as:
L8V3L2VLAVALY,
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You might be tempted to collect all the L’s
together, and all the Vs and write this is L"V® and then
simplify this to just L2V using the fact that L>=V2 =1,
So the power of L can be reduced by removing blocks
of 5, and the power of V can be reduced by removing
pairs.

However you can’t bring the L’s together and the
V’s, like you would in ordinary algebra. These moves
don’t commute, that is, VL # LV. If you start with
LODGE, the move VL would turn it into GDOLE,
while LV makes it LEGDO.

We can use the fact that L® = V2 = | to simplify
our supposed solution to L3VL2VL*VL? Could we
simplify it further?

Notice that VL = L*/. Check it out. For
example, VL turns LODGE into GDOLE. L* turns
LODGE into ELODG and V then changes this to
GDOLE, which is the same as VL. This means that we
can move a V across L’s but as VL = L*V so each L on
the right of a \V becomes L. But, since L> =1, L*=L",
so our rule for moving a V across an L is:

VL =LV,
This is called the dihedral law and is used in
certain cases where two operations don’t obey the

commutative law.
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This can be generalised to VL" = L™V by
moving the L’s one at a time. But instead of
remembering the formula just remember the mantra:

TO MOVE A ‘v’ PAST A POWER OF ‘L
SIMPLY INVERT THE POWER OF L.

So our supposed solution can be simplified as
follows:

L3VLAVLAVL? — L3 L2V VLVL2 — LV2ALYVL? —
LSVL? - L° L2V — L3V,

In this way, any solution can be written as L™V",
and since we cantakem=0,1,2,3or4andn=0or 1,
we only get 10 possibilities. So we only need to test
those 10 possibilities.

I L L2 L3 L4
LODGE | ODGEL | DGELO | GELOD | ELODG

\Y LV L2V L3V L4V
EGDOL | LEGDO | OLEGD | DOLEG | GDOLE

Since GODEL is not one of these it cannot be
achieved.

The area of mathematics that studies such non-
commutative systems is called Group Theory. Groups
were invented by a French mathematician Evariste
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Galois at the age of 19. He used them as a way of
solving a problem about polynomial equations.

So, in the end, the proof of impossibility came
down to checking a finite number of possibilities. The
breakthrough came when we realised that the infinitely
many possibilities are equivalent to just 10. This is a
common situation in mathematics. Something, with
infinitely many possibilities, is proved to be impossible
by reducing these infinitely many possibilities to a
finite number which are then checked.

A classic example of this is the celebrated Four
Colour Theorem. It began as a question in 1852 when
Francis Guthrie, who was drawing and colouring a map
of the counties of England, wondered whether four
colours are enough. Guthrie had studied under the
mathematician Augustus de Morgan at University
College in London and his brother, Frederick was then
studying mathematics under de Morgan. So Francis
passed on the question to de Morgan through his
brother.

De Morgan wrote: “A student of mine asked me
to day to give him a reason for a fact which | did not
know was a fact — and do not yet. He says that if a
figure be any how divided and the compartments
differently coloured so that figures with any portion of
common boundary line are differently coloured — four
colours may be wanted but not more — the following is
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his case in which four colours are wanted. Query:
cannot a necessity for five or more be invented.

Over the next few decades it became the Four
Colour Conjecture. Many ‘proofs’ were published and
several of them stood for a number of years before they
were shown to be wrong. It took over 100 years before,
in 1976, it was finally proved by Appel and Haken.

But the proof caused a lot of controversy in that
it was the first theorem in history that was proved by a
computer program. Of course no computer program
could consider the infinitely many possible maps. What
Appel and Haken did was to use standard mathematical
reasoning to reduce
this to 1,834 maps. If
all these could be 4-
coloured then every
map could be 4-
coloured. Here is the
principal of reducing a
proof of impossibility
to checking a finite number of cases. However this
time, the number of cases was rather large and required
a computer to check them all. A computer program,
laboriously, considered each of these maps and, indeed,
showed that every one of them was 4-colourable.

Appel and Haken were at the University of
[llinois when they published their proof and the local
postal authorities were so proud of this discovery that
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for many years they franked letters that passed through
their hands with the words FOUR COLORS SUFFICE.
Indeed they were still using this slogan in 1994 as this
picture shows.

Motivational speakers often use the slogan:

| NOTHING IS IMPOSSIBLE! |

| hope that, as a result of reading this chapter, you will
realise that it is not really true. You slogan should read:

SOME THINGS ARE IMPOSSIBLE BUT
THEY ARE LESS COMMON THAN YOU
MIGHT THINK!
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INTERLUDE: RADIO
SCRIPT

“It is Impossible — There is no Time”

Narrator: Mathematics and sport have this in
common. They’re both a young man’s occupation. An
historian reaches his peak in his sixties, an engineer at
forty. A mathematician is said to be already on the
decline at the age of thirty. Evariste Galois made his
important discoveries in the theory of algebraic
equations at the age of nineteen. At twenty he was
dead.

Female Voice: Poor boy. What
did he die of?

Narrator: He was killed in a
duel.

Female Voice: Sounds like a = f
character out of one of the &
Alexander Dumas novels.

Narrator: Almost. Alexander Dumas knew him and
referred to him in one of his memoirs.
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Female Voice: So Galois had to defend his
mathematics with his rapier?

Narrator: Well no. For a start it was a duel fought with
pistols, not swords. And secondly it was over a woman.

Female Voice: Just like a Frenchman!

Narrator: Perhaps. But in fairness I should point out
that it was more than likely that she had been planted
by his political adversaries to provide the excuse for a
duel. It was really all to do with politics. You see,
Galois had been very active in Republican politics and
several times landed himself in trouble with the police.
In fact much of his mathematics was done during spells
in gaol. (With feeling) He wasn’t afraid of death and
he’d gladly have died for the Republican cause. But
such glory was not to be.

Galois: | beg patriots and my friends to forgive me that
in dying | do not die for my country. I die the victim of
an infamous coquette. My life is quenched in a
miserable piece of slander.

Oh, why do I have to die for such an unimportant
cause; to die for something so contemptible? Farewell!
It was my wish to give my life for the public good.
Forgiveness to those who kill me. They are of good
faith.

Narrator: These were the words he wrote to his friends
on the night before the duel. He seemed quite sure that
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this night would be his last. He sat up all night writing
some personal letters and then going over his
mathematical papers. Scrawled across one of them he
wrote the pathetic words ....

Galois: (in despair) | have no time.

Narrator: So many of his ideas had yet to be written
down and there was just not enough time. He wrote ...

Galois: | hope some people will find it to their
advantage to decipher all this mess.

Narrator: The duel took place on Wednesday 30"
May 1832 just outside Paris. Galois was wounded and
left lying by the roadside. Even his seconds deserted
him. He was eventually found by a Good Samaritan
and taken to hospital. It was in vain, for the next day he
died.

His mathematical discoveries however were to
lie on the roadside for a further eleven years. Not by the
side of the road out of Paris but by the side of the
highway of mathematical research. The Good
Samaritan who rescued them was Joseph Liouville who
in 1843 drew Galois' work to the attention of the French
Academy.

Liouville: I hope to interest the Academy in
announcing that among the papers of Evariste Galois |
have found a solution, as precise as it is profound, of
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this beautiful problem: whether or not a given
polynomial equation is soluble by radicals.

*hkhkkkkhkhkhkhkhhkhhkhhihiihhiiik

Narrator: What was this theory that was “beautiful”
and “as precise as it is profound”? It was in fact the
culmination of over two thousand vyears of
mathematical enquiry into the theory of polynomial
equations.

Most people have heard of quadratic equations.
Most people vaguely remember what they are. Roughly
speaking they're equations involving x2. Maybe you
also remember that there’s such a thing as a quadratic
equation formula. Now I’'m not expecting you to
remember it — simply to know that it exists. It’s a
formula into which you put the numbers from the
equation, do some arithmetic, and out pop the answers.

The arithmetic isn’t hard, but at one stage it
involves finding a square root. “Radical” means the
same as “root”, and solving a polynomial equation by
radicals simply means finding a formula for such an
equation into which you plug the numbers from the
equation and do some arithmetic, including finding
square roots, cube roots or whatever roots may be
necessary.

Now the Babylonians could do it for quadratic
equations. In the sixteenth century the Italians worked
out how to solve the cubic (involving powers of x up to
x3) and the quartic (powers up to x*). These formulae
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are much more complicated than the one for the
quadratic but they have a similar structure.

The next step should have been the quintic
(powers up to x°). But no such formula was
forthcoming for the next three centuries. Finally in
1824 a 22 year-old Norwegian mathematician, Abel,
called off the search — he proved that no such formula
can possibly exist.

Abel’s methods, however, were not very
enlightening. They worked but they didn’t make one
feel that one knew why they worked. The methods of
Galois a few years later were much more general and
much more enlightening. Moreover he took the
problem a stage further.

So, Abel has shown that there is no general
formula for all polynomials involving x°. But there are
formulae that work for some of them. Which ones?
Galois worked out exactly which ones are soluble by
radicals and which ones are not.

Now make sure you understand what is being
claimed. Not that some polynomial equations have no
solutions. Solutions can be proved to exist, even if we
can’t find them. Not even that we can’t find the
solutions for practical purposes. There are methods,
implemented by computers, which can find any
solution to any degree of accuracy. It’s a question of
which polynomials can be solved exactly, by means of
a formula involving radicals or roots.
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Galois showed that corresponding to every
polynomial equation is something called a group. And
one can tell from the structure of this group whether or
not the polynomial is soluble by radicals.

Now | think that rather than give you a formal,
precise and technical definition of a group it would be
better if | gave a broad and vague description, and then
a specific example.

A group is a certain type of mathematical system
where the things in it can be combined like
multiplication. But the things needn’t be numbers and
the method of combination needn’t be ordinary
multiplication.

Pretty vague isn’t it? Well I didn't want to get too
technical. Now here’s an example. It’s called the
“dihedral group of order 8”. It crops up in many
different guises. | could describe it to you the way
Galois would have, in terms of substitutions of
solutions of a certain polynomial equation, or, as it is
presented in a modern course on Galois Theory, as
automorphism groups of field extensions. But I won’t.
That’s too hard.

Instead, let me dress it up as a children's party
game. [’ve called it “duels” in memory of Galois. It's
rather a fun sort of game that can be counted on to keep

S a bunch of bored children
amused - for a few
minutes anyway. Who
said mathematics can’t
be useful!
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“Duels” is a game basically like “O'Grady Says”
where players are “out” if they make a mistake in
obeying the leader's instructions.

The instructions are RIGHT, LEFT and LOAD.
The instructions RIGHT and LEFT require you to turn
through 90 degrees, left or right and to LOAD, you
hold your hand up with two fingers outstretched as if
holding a pistol. But here’s the catch.

Whenever the gun is loaded you must do the opposite
to what you are told.

If your gun is loaded and you’re told to load, you
must unload, that is, fire. And if told to turn right with
a loaded gun you must turn left and vice versa. But only
when the gun is loaded do you do the opposite. At other
times you must obey the instructions exactly.

It’s quite hilarious to watch when a number of
people are playing and you really need to keep your
wits about you to play it well.

Would you like to try it out right now? If you
don’t feel like standing up and obeying the instructions
overtly you can remember which wall you’re supposed
to be facing, and discreetly raise your right hand
whenever the gun is loaded.

Choose a particular starting direction as your
“home” direction. Gun unloaded. Ready?

RIGHT
LOAD
RIGHT
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Did you remember to obey this second right turn by
turning left?

LOAD

You should once again be in your home position
with your hands by your side having just fired the
pistol.

Now there are eight positions you can be in
during this game — four directions, each with a loaded
or unloaded pistol. And there are basically eight
different sets of instructions for getting you there.

We say that two sets of instructions are equal if
they result in the final positions. So for example,
LOAD LOAD LOAD would be the same as LOAD.
(Never mind that in the first case you've fired a shot.)
And three right turns would equal one left turn.

So you see, we’ve a mathematical system here
consisting of eight things. The things aren’t numbers
— they’re sets of instructions. And we can combine
them like multiplication by doing one set of
instructions after the other.

We get equations like:
RIGHT times RIGHT times RIGHT equals LEFT

and
RIGHT times LEFT equals LEFT times RIGHT
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Now here's the interesting thing about this group
which makes it quite different from groups of numbers.
Are you in your starting position? Gun unloaded?

RIGHT
LOAD

| want you to remember which way you’re
facing. You just performed RIGHT times LOAD.
Now go back to your home position, gun unloaded, and
this time do

LOAD
RIGHT

that is, do the same two operations in reverse order.
Notice that you’ve ended up in the opposite direction
to before.

RIGHT times LOAD is not equal to LOAD times
RIGHT

We have what is called a non-commutative group.

The difference between commutative and non-
commutative groups is very important in Galois
Theory. Commutative groups are those where x times
y is always equal to y times x. The dihedral group of
order 8 is non-commutative.

Suppose you think of solution by radicals as a
sort of “abstract stomach” and commutative groups as
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particles which can be absorbed by the stomach lining.
Any group which can be broken up into commutative
bits would therefore be digestible. The dihedral group,
for example, can be broken into two commutative bits
in a way that [ won’t attempt to describe.

Galois showed that these digestible groups (or
“soluble groups” as he called them) — these groups
which can be broken down into commutative bits — are
precisely the groups that correspond to polynomial
equations that are soluble by radicals.

Some polynomial equations (3x° —5x3+1 =0
for example) correspond to groups which are not
soluble, or to use our analogy, they are indigestible.
They involve a non-commutative chunk which cannot
be broken down further. These polynomial equations
are therefore not soluble by radicals. Not even by
Galois, who was something of a radical in the political
sense.

It was quite an achievement for a young man
who only scribbled his mathematics in his spare time
and threw the major part of his energies in fighting for
the freedom of his country. On the eve of his duel he
wrote to two of his friends ...

(The sounds of “Le Marseillaise” are heard in the

background.)

Galois: | have been provoked by two patriots and it is
impossible for me to refuse.
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Your task is simple. | want to let it be known that
I am fighting against my will after having exhausted all
means of reconciliation. Please remember me, since
fate did not allow me a life that would make my name
worthy to be remembered by my country.
| die your friend,
E. Galois

(The music of “Le Marseillaise” swells and reaches its
dramatic conclusion.)
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3. THE INFINITE

83.1. Is Infinite Knowledge Possible?

We’re told that God is omniscient. He knows all.
We don’t. We have finite brains so we can’t know
infinitely many different things. Or can we?

The finite brain has a large, but finite, memory
capacity. So common sense tells us that there’s only a
finite amount of information it can contain. Yet in a
certain sense we can know infinitely many facts. (Of
course this falls far short of omniscience!)

Suppose | am in love with a woman, living in
another city. | write and tell her that I love her. At the
time of writing she doesn’t know that. But the next day,
when she receives the love letter, she knows. She
knows that | love her but I don’t know that she knows.
Not until she writes back. When | get her reply, | know
that she knows I love her, but she doesn’t yet know this.
She must wait for my reply to find out.

There are infinitely many facts of the type: *
know that she knows that I know that she knows ....”
After a few letters it may not be of very great interest
to me to distinguish between these successive layers.
But logically they’re separate facts because they
become true on successive days.
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Now although there are infinitely many distinct
facts here, at any time only a finite number will be
known to me. Every second day when | open the next
letter from my beloved I have a new fact to add to my
collection, but only ever a finite number at any stage.

But suppose that instead | was in her presence,
looking lovingly into her eyes. At the moment | issue
the words, “I love you”, all of the “I know that she
knows .” facts are instantly known to me. It’s not that
the information travels back and forth rapidly at the
speed of light. I don’t need to wait for her eyes to light
up. | can infer that because she is actually in my
presence, he has heard what | said. And equally well
she can deduce that because | am standing there, | will
know that she knows. Infinitely many distinct facts are
knowable in an instant!

I know that 2 is bigger than 1. That’s one fact.
And 3 is bigger than 2 — a second fact. And 4 is bigger
than 3, and 5 exceeds 4, and so on. There are infinitely
many facts like these, all of which | know. And the
reason why [ know them is that I have a rule: “one more
than any number exceeds that number”, or “n+1>n".

The only way a finite mind can know an infinite
number of facts is to know a rule that will generate
them. We will only ever use that rule a finite number
of times, but the set of potential instances is infinite. In
this sense, a finite mind can have infinite capability.
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§83.2. What Does ‘Infinite’ Mean?

It’s an amazing thing that the finite human mind
ever conceived of the idea of the infinite. As amazing
as if arace of natives living on a small island which had
always been completely cut off from the rest of the
world, had a concept of other lands across the sea.

What’s even more amazing is that the finite
human mind has to some extent been able to explore
the infinite and has discovered detailed facts about
infinity. As amazing as if that isolated island race had
detailed knowledge of the cathedrals of Europe.

Yet that is the case. Mortal man has notions of
immortality, earth-bound man conceived of other
worlds long before space travel began, and finite man
has had a word for “infinity”. But what exactly is
infinity?

| once asked a group of students what they
thought ‘infinity’ meant. Some said, “it’s the biggest
number there is”. Others said, “it’s something you can
approach but never reach.” Yet others said, “the
ultimate”.

All of these answers have captured a little of the

mystery of the infinite but they’re notions far too vague
on which to build any knowledge.
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“Infinity is the
biggest number there
1s.” Well of course
there is no biggest
number in the sense
of a number in the
sequencel, 2,3, ... S0
we’ll have to invent a
new number that goes
after all the others:

How does that sound? Any set or collection that
1sn’t finite is infinite, and the number of elements in an
infinite set is denoted by oo.

That’s a perfectly good state of affairs if we don't
want to be discriminating about the infinite. We’re
saying that all infinite sets are to be regarded as having
equivalent size — there’s only one infinity.

There’s nothing wrong with this — except that it’s
a bit like the tribe of Tasmanian aborigines who are
supposed to have had no words for numbers after three.
Counting in their language went “one”, “two”, “three”,
“many”’. Any more than three is a crowd. That certainly
keeps arithmetic very simple! “Two plus two is many”.

Anthropologists have dismissed this story as
false and indeed we’re discovering that Aboriginal
culture was rather more sophisticated than we thought.
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Elsewhere | describe how the kinship rules of one tribe
anticipated the discovery of Group Theory.

Georg Cantor discovered, in the latter part of the
nineteenth century, that it’s possible to distinguish
between different sizes of infinity in a very natural way
and this has proved a useful tool in both mathematics
and computer science.

Not just one infinity, but many. Now if you’re
hearing about this for the first time you’re perhaps a
little sceptical. It’s quite a radical idea, even though it’s
been around for over a hundred years. At least keep an
open mind on the question. Simply to automatically
lump all infinite sets under the one heading is to make
up your mind in advance.

Well if we’re to proceed and to ask the question
whether or not all infinite sets have the same size, we
need to develop some concept of size or “same size”.
In chapter 1 we saw that we could define two sets of
things as having the same size if they can be paired off
exactly.

Two sets have the same size if we can pair the

elements of one exactly
with the elements of the other.
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§3.3. Counting Couples

One of the greatest hindrances to social harmony
in a society is held to be an imbalance between the
sexes. Nowhere is this more evident than at a formal
dance.

Now I know that the problem of insufficient men
at a dance has often been overcome by women dancing
with women, and in modern times the necessity or
desirability of dancing with a member of the opposite
sex, or indeed having a partner at all, has been called
into question. But for the old-fashioned formal balls,
for which the Strauss brothers wrote their waltzes and
polkas, it was taken as an axiom that dancers were
couples and each couple came from opposite sides of
the biological tracks.

Imagine then that you’re in Vienna at a ball and
that you cast your eyes around the many dancing
couples. You notice that nobody is sitting out — all are
dancing. You’d be justified in concluding that the
number of men was the same as the number of women,
that is, if you exclude yourself. If, on the other hand,
there were a few female wallflowers, and no men,
you’d conclude that there were more women than men.
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These conclusions would have been reached
without counting the ... 7
men and counting B . g
the women and then % o i
doing the necessary o
arithmetic
comparison.

Are there
more left legs or -
right legs on the dance floor? A brief inspection reveals
no one-legged dancers hobbling on crutches, so the
number of left legs is the same as the number of right
legs. Again, no counting was involved. Just the
realisation that left legs are paired with right legs, just
as male dancers are linked to their female partners.

§3.4. The Biggest Number There Is

We tend to think of counting as the most basic of
all mathematical activities. Yet more primitive still is
the notion of one-to-one correspondences, or pairings.

When, as kindergarten children, we counted out
loud as we pointed to each object in turn, we were
setting up a one-to-one correspondence between the
things we were counting and a certain set of counting
numbers. We pointed to a yellow duckling and said
“one”. The next one was called “two”. We may have
thought, at one stage in our conceptual development,
that we were giving names to the fluffy creatures.

97



Gradually it would have dawned on us that these
‘names’ have nothing to do with what we were
counting as we abstracted the concept of number from
the things themselves. Soon we felt very proud that we
could count to a hundred and beyond. As we learnt to
write down longer and longer numbers we began to
realise that there was no end in sight. We might not
have known what words to use after ‘trillions’ and
‘quadrillions of quadrillions’ but we knew that we
could keep adding zeros to make larger and larger
numbers.

Big numbers fascinate little children and a
favourite pastime is to think of a description of a bigger
number than other children.

“I bet you a trillion, trillion, quadrillion dollars
that ....”

“I bet you all that and a trillion dollars more!”

“Alright, T bet you all the money in the
universe.”

“I bet you a hundred times all the money in the
universe.”

It was fortunate that none of these childish bets
ever had to be paid. The next stage was the concept of
‘infinity’.

“I bet you infinity dollars.” This was supposed
to be a winning move because infinity is the biggest
number there is.

“I bet you infinity times infinity dollars!”
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§3.5. Dancing To The Music of Schrdder

and Bernstein

The infinite world is in many ways an extension
of the familiar finite world. But in other ways it is quite
different. The concept of pairing as the basis for same-
number-as works just as well for the infinite as it does
for the finite. Where the difference comes is that a finite
set gets smaller if you take one thing out. An infinite
set does not.

This may seem paradoxical but that’s because
we’re to some extent imprisoned by our experience of
the finite world. Remember we’ve agreed to say that
two sets have the same size if they can be paired off
exactly with nothing left over.

Dancers in competitions often have numbers
pinned to their backs. Imagine a competition with
infinitely many men and infinitely many women. The
dance floor may get a little crowded but with a bit of
effort we can read the numbers pinned to them: 1, 2, 3,
... They go on forever.

Number ‘1’ gentleman dances with number ‘1’
lady, ‘2’ dances with ‘2’ and so on. Everyone’s happy
because the number of men is exactly equal to the
number of women. But lady number ‘1’ feels poorly
and goes home so number ‘1’ man is without a partner.
The numbers of men and women are no longer the
same. Right?
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Wrong? All it needs is a little reorganisation.
Number ‘1’ man can now dance with number ‘2’ lady.
Number ‘2’ man, having lost his partner taps number
‘3’ man on the shoulder and takes over his partner. The
dance becomes an ‘excuse me’ dance as each man
changes to the next numbered lady.

In a finite world, the last man misses out. But in
an infinite world, there is no last man! Nobody misses
out. Soon everyone has his or her new partner and the
dancing goes on. Everyone is happy and so we’re
forced to conclude that the number of men and women
has remained the same.

So the fact that there are some men, and no
ladies, sitting down not dancing doesn’t mean that there
are more men than woman. Not at an infinite dance
anyway. And if at another dance there are only lady
wallflowers it needn’t be the case that there are more
ladies than men. The numbers may in fact be the same
in each case and it may just need a bit of reorganisation
of partners to get everyone on the dance floor.

Of course with finite sets of dancers this can’t
happen. Only women left on the side? There must be
fewer men. But with infinitely many it’s possible for
this apparent disparity to occur with equal numbers.

If lady number ‘1’ had returned after the above
excuse-me dance had reorganised the couples, she’d be
without a partner, notwithstanding the fact that the
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numbers of men and women would still be the same.
All very strange, but you can’t dabble with the infinite
without getting a few shocks.

Schrdder and Bernstein may sound like a pair of
musicians but in fact they were a couple of
mathematicians who discovered, and proved, what is
known as the Schréder-Bernstein Theorem. If they had
been musicians in an infinite ballroom they might have
had a conversation like this:

“I'say, Schroder, did you notice that in the last dance
there were only ladies left over.”

“Of course my dear Bernstein. Such poor
organisation. In the dance before that there

were only men sitting out.”

“That surely means that there are equal numbers of
ladies and gentlemen.”

“Probably, but can you prove it?”

“I'll think about during the next dance.”

Schroder and Bernstein did in fact prove this
fact, though not while playing at an infinite ball. In less
colourful terms the Schroder-Bernstein Theorem goes
something like this (to the tune of “The Number
Rhumba™)

If all the elements of J can be paired
with some of the elements of K,
and all the elements of K can be paired
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with some of the elements of J,
then it follows as surely as dead cats have flies
that J and K must have the same size.

Would you like to see a proof of the Schroder-
Bernstein Theorem? No, then you’d best make a detour
and go straight to the next chapter, but make sure you
go via the story Pam and the Prime Minister.

So, you’re still reading? Well, don’t say I didn’t
warn you. Here’s a story that contains the basic idea of
the proof of the Schréder-Bernstein Theorem.

We are going to look at imaginary family trees.
In this story we have the ability to know the future, so
that we can project family trees into the future. Suppose
that all men and women who have ever lived, or will
live in the future, have, or will have, exactly one son
and one daughter.

Suppose too, that the daughter of every male
born in Australia was, or will be, herself born in
Australia and the son of every female born in Australia
was, or will be, also born in Australia.

This doesn’t seem to be a very good model for
the human race but, as | said, this is just a story. We
have two sets that we’ll call M and F. The set M is the
set of all males who were, or will be, born in Australia
and F is the set of all females who were born, or will be
born in Australia.
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Now every male has, or will have, exactly one
daughter, also born in Australia and so the males born
in Australia will be paired exactly with their fathers,
and so there will be the same number of each.

Let FAF be the set of all females with an
Australian born father and let MAM be the set of all
males with an Australian born mother. These will be
paired off exactly with their mother and so there will
be the same number of each. So we have 6 sets of
people:

e Males born in Australia

e Females born in Australia

e Males born in Australia with Australian
mothers

e Males born in Australia with non-Australian
mothers

e Females born in Australia with Australian
fathers

e Females born in Australia with non-Australian
fathersb

103



daughter son

> -
A A .
with with with _
Aussie- Aussie- Aussie-
born < | Bomn < | Born
mums same dads same mums
$\|0 L >N0. 9
with non- with non- with non-
Aussie- Aussie- Aussie-
/ Y
MALES born FEMALES born MALES born
in Australia in Australia in Australia

The males born in Australia will pair off exactly
with their mothers. The females born in Australia will
pair off exactly with their fathers.

We want to show that there are as many males
born in Australia as there are females born in Australia
(under these rather unrealistic assumptions).

Now many males born in Australia
had/have/will have Australian-born mothers. Many of
these mothers will have Australian-born fathers, but
some will have fathers born overseas. If we trace back,
alternately through the mother and the father, we may
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eventually strike someone who was born overseas. On
the other hand, in this tale of infinitely many
generations, both backward and forward, this
alternating chain of ancestors may go on forever.

If, for a male, this alternating chain (mother,
maternal grandfather, mother of maternal grandfather
etc) reaches someone born overseas we call his last
Australian born ancestor in this chain his Ultimate
Australian Ancestor or just UAA.

If, for a female, this alternating chain will go
father, paternal grandmother, father of paternal
grandmother etc. If it reaches someone born overseas
we call her last Australian born ancestor in this chain
her Ultimate Australian Ancestor, or UAA.

If such an alternating chain never ends, and
there’s no UAA for a person, we’ll call that person
aboriginal. Historically, indigenous Australians are
descended from people who came from Indonesia over
forty-thousand years ago and so they would have
UAA’s just like the Europeans and Asians in Australia
whose UAA was much more recent. But here I'm
reserving the term ‘Aboriginal’ for those mythical
people who can trace their ancestry through infinitely
many generations, all born in Australia. (I hope I don’t
offend any indigenous people by this use of the word,
but I believe that they prefer the word ‘indigenous’ to
‘Aboriginal’ anyway.)
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KEY: = male . = female

— points to father ——> points to mother

D = born overseas O = Ultimate Australian
Ancestors

The last two rows depict Aboriginals i.e. with no
Ultimate Australian Ancestor.

Take young David. He was born in Australia.
His mother, Louise, was also born in Australia.
Louise’s father, Christopher was born in Australia, and
Christopher’s mother Sue was also born in Australia.
But suppose that her father, George, was born in
England. Then Sue will be the Ultimate Australian
Ancestor (UAA) of David. She will also be the UAA
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of Christopher, and Sue herself. Sue will also be the
UAA of David’s daughter and his daughter’s son.

Now consider Alice. She was
born in Hobart. Her father, Bruce,
was born in Adelaide. Bruce’s
mother Connie was born in Sydney
and Connie’s father was Donald
and he was born in Brisbane. So all
of these ancestors were born in
Australia. Finally, Donald’s mother :
was Eleanor and she was born in London So Donald is
the UAA of Alice. He is also the UAA of Bruce,
Connie and Donald himself. Donald will also be the
UAA of Alice’s son and her son’s daughter.

Little Bindi was born in Alice
Springs, and her father, Jimba was
born in Central Australia. Tracing
back Jimba’s ancestry in this
alternating fashion (mother, father,
mother ...) we find that they were
all born in Australia. In that case we
can call Bindi an Aboriginal in the
rather special meaning of the word that | am using in
this story. Jimba will also be Aboriginal and Bindi’s
son and his daughter will also be Aboriginal. Bindi’s
daughter may be aboriginal, but that depends on who
Bindi marries because the alternating lineage that
matters in this story will pass back through her
husband.
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Now we divide the males born in Australia, and
the females born in Australia, each into three subsets:

Males born in

Australia

males with females
with
male UAA |< daughter — , ol
<« father UAA
) females
males with < son with
female >
female
UAA mother —» UAA
male female
Aborig- < son »| Aborig-
inals mother — inals

Females born in
Australia

The males with a male UAA are paired exactly
with females with a male UAA.

The males with a female UAA are paired exactly
with females with a female UAA.

The male Aboriginals (with no UAA) are paired
exactly with female Aboriginals.
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So each of the three subsets of males born in Australia
has the same size as the corresponding subset of
females born in Australia. Hence the set of males born
in Australia has the same size as the set of females born
in Australia. This example reflects the general proof.

§3.6. The Infinite Manifesto

A political manifesto is a sequence of statements
that are believed to be true about the way society
should be run. Of course there will only be finitely
many statements in such a manifesto. But consider the
following infinite manifesto:

INFINITE MANIFESTO
[1] At least one of the following statements is FALSE
[2] At least one of the following statements is FALSE
[3] At least one of the following statements is FALSE
[4] At least one of the following statements is FALSE
[5] At least one of the following statements is FALSE

This appears to be a single statement repeated
infinitely many times, but each one refers to a different
collection of statements and so they’re subtly different.
Notice that no statement refers to itself, either directly,
or indirectly. There is no circular self-referentiality.

Yet there is a paradox hidden in this seemingly
innocuous manifesto. Suppose that one of the
statements is TRUE. Let’s suppose statement [n] is
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TRUE. Then, by what it says, there is a FALSE

statement below it. Let’s suppose this is statement [m],
where m > n.

So statement [m] is FALSE, that is, it is FALSE
that there is a FALSE statement below it. This must
mean that all the statement after [m[ are TRUE.

In particular statement [m + 1] is TRUE. So there
is a FALSE statement below statement [m + 1]. Yet we
said that all the statements after statement [m] are
TRUE. We have a contradiction.

But we don’t yet have a paradox because we
assumed that one of the statements is TRUE. We have
therefore proved, by contradiction, that all the
statements are FALSE. But in each case that would
mean that there’s a TRUE statement below it, which
can’t be if all the statements in the list are FALSE. Now
we have a real paradox!

Go through the argument slowly a few times
until you can see that we cannot assign truth values to
these statements in any consistent manner. But note —
this example doesn’t show that logic is nonsense. It
merely shows that the artificially constructed infinite
list of, what appear to be statements, don’t contain any
genuine statements at all.
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8§3.7. The Largest Prime Number

How can you prove that @
there are infinitely many
golden eggs in a magic goose?
Just waking up each morning };\
to a new gleaming golden egg / :
is no proof. Perhaps e }_L ‘
tomorrow there will be none, S8l L5
or the next day. No, the only way to be certain that there
will always be a new egg each morning is to cut the
goose open and find out. But, you all know the story!

A prime number is a number bigger than 1 that
has no factors other than 1 and itself. The list of prime
numbers starts with 2, 3,5, 7, 11, 13, 17, 19, 23, ... Are
there infinitely many prime numbers or is there,
somewhere out there, a largest prime number? You
can’t settle it as easily as showing that there is no
biggest number. You can’t add 1, or even 2, to a prime
number and expect to get a prime number. Prime
numbers have fascinated mathematicians for thousands
of years because in a certain sense they’re as
unpredictable as random numbers.

What is certain about them is their statistical
distribution. While there’s no known formula for the
n’th prime, the probability that a random number of a
certain size is prime is known. This probability falls off
as the size increases. Primes get rarer and rarer. Could
they, in fact, dry up altogether? Euclid proved that they
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do go on forever, even though they become scarcer and
scarcer. This is a famous example of a proof by
contradiction.

Theorem: There are infinitely many prime numbers.
Proof: Suppose to the contrary that there are finitely
many prime numbers.

Multiply them altogether and you get a number
which is divisible by them all.

Add one more and you get a number that's not
divisible by any of them (a prime number can’t divide
two successive numbers).

Being bigger than every prime it can’t be prime
itself, yet it must factorise into primes and so is
divisible by at least one prime number.

This is a contradiction and so there are infinitely
many prime numbers.
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INTERLUDE: STORY
Pam and the Prime
Minister

The pure voices of the boy sopranos floated up
to the lofty recesses of St Mersennes. “... primes
without end ... a-men”. The service was over.

Elisabeth turned to her friend and said, “Isn’t he
a dream — those eyes!”.

But Pamela said, “I was more interested in his
sermon. It seemed very persuasive but I’'m sorry,
Elisabeth, I’m still an agnostic. I just can't believe in
your doctrine of the Infinitude of Primes. | mean,
perhaps it is true that there are infinitely many prime
numbers. I can’t see how you could ever know for
sure”.

“But Pam, you can see here in Primes Ancient
and Modern and here in The Book of Common Primes
that there are primes for ever and ever into eternity.
Look there’s no sign of them petering out.”

They had reached the church door and the young
curate held out his hand.

“I trust you enjoyed the service, Elisabeth?” He
greeted them, while looking at Pamela with his
penetrating blue eyes.

“Oh yes”, gushed Elisabeth, “I found the primes
so inspiring. But I'm afraid my friend here is an
unbeliever”.
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Pamela smiled sheepishly. “It’s just that I can’t
see how you can be so certain. | admit that it seems very
unlikely that the list of primes will ever come to an
abrupt halt but ... | mean ... it is possible. After all
primes become rarer as you go among the larger
numbers. Is it inconceivable that they eventually give
out altogether?”

She pointed vaguely in the direction of the
churchyard, but there were too many people behind
them waiting to shake the curate’s hand to continue the
conversation.

“How about if you and Elisabeth come to the
rectory next Sunday afternoon? We could talk some
more over tea and scones.”

E I I e S e S S

Reverend Matthews poured the tea and passed
round the excellent scones that Mrs Duffy had made.

“I’'m sure Pam would like to believe that there
are infinitely many primes but she doesn’t seem to have
enough faith.”

“If only there was some way you could prove it
to me,” sighed Pamela, “but of course that’s
impossible. Even if | spent from now till the end of the
world factorising numbers I’d only be considering a
finite number of possibilities. There’s no way the
question can ever be settled.”

“Well,” said the curate, “you do believe that
there are infinitely many numbers altogether don’t
you?”
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“Oh yes, of course, that’s obvious. I mean you
just keep on adding one to get bigger and bigger
numbers.”

“And if I claimed that there was a biggest
number?”” he asked.

“Then I’d say what about that number plus one?”

“Exactly. I'd be forced to admit that my claim
was false.”

“But that wouldn’t work for prime numbers,”
protested Pam, “because all primes are odd ... except
for the number two of course. And so the largest-prime-
plus-one would be an even number so it couldn't be
prime. And the next number after that mightn’t be
prime either.”

At this Reverend Matthews took a handful of
cubes from the sugar bowl and laid them neatly in a
row on the damask tablecloth. “Suppose,” he said, “that
each of these sugar cubes represents a prime number.
Here’s two and three, five, seven, eleven and thirteen,
seventeen, nineteen and twenty-three. Now just
suppose, for argument’s sake, that there does exist a
largest prime.”

He scooped up the glistening white cubes and
put them back into the sugar bowl. “Just suppose that
this bowl contains every prime number up to the largest
prime.”

“Well, alright then,” agreed Pamela, “just for the
sake of argument. But don’t forget that I maintain that
believing in a largest prime is just as illogical as
believing in the Infinitude of Primes. You’d need
infinite time to prove it one way or the other.”
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“I hope it won’t take that long,” he said looking
at his watch and smiling, “I have
to conduct Evensong at six
o'clock!” He picked up the pot
containing all-the-primes-in-the-
world and said, looking earnestly
at Pam, “we have here every
prime number that exists and,
we’re supposing, there are only
finitely many of them.”

“But a very large finite number,” said Elisabeth
helpfully.

“Now we can multiply all these numbers
together to get an exceedingly large number.”

“What if there’s not enough paper in the whole
world to write it down?”” asked Elisabeth.

“That's of no consequence”, he assured her, “we
can conceive and discuss numbers bigger than the
number of atoms in the cosmos. Don’t forget, a
number’s existence doesn’t depend on the vital
statistics of our universe.”

“But I don’t see what you're getting at”, said Pam
as she took another scone. “The result of multiplying
all the prime numbers won’t be a prime number itself,
so where’s the contradiction, if there is one?”

“But would you agree that this product-of-all-
primes will be divisible, exactly, by all prime
numbers?”

“Yes Pam, don’t you see,” said Elisabeth
excitedly, “every prime number will go into it exactly
because every prime will be one of its factors!”
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Pam did see. She was more concerned about
where the argument would go from there.

“Well the product-of-all-primes will be divisible

by all primes so the product-of-all-primes plus one

. can’t be divisible by any

prime.” Reverend

Matthews leaned over

towards Pamela to make
sure she got the point.

“You mean because

no two consecutive

numbers can have a

common factor?”, said

Pam thoughtfully.

“Exactly. So we’re brought to a number which
has no prime factors. Now this product-of-all-primes-
plus-one is too big to be a prime itself.”

He put his hand on Pam’s head to steady her
from the impact of the contradiction that was about to
follow. “But every number, if not prime itself, can be
factorised into prime factors, so it must be divisible by
at least one prime and hence we reach a contradiction.
And remember Pam that contradiction only came about
because we were foolish enough to contemplate a
largest prime.”

Pam appeared to recover quickly from the shock
of the contradiction, if she felt it at all. But in case of
an aftershock his hand across the table steadied her
arm.

Pam, in fact, was so deep in thought that she
forgot for a moment that she even had an arm. She
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screwed up her pretty, little nose, trying to make sense
of it all. At last she discovered the arm, drew it away
from the young curate’s grasp and picked up an unused
sugar cube which had lain unnoticed on her saucer.

“Well all that means,” she said, “is that since it
isn’t divisible by any of the primes already in our pot it
must itself be prime, one we overlooked. So we just
pop this extra prime in the pot.” And she dropped the
sugar cube into the bowl.

“But”, protested Reverend Matthews, “you’ll
just get the same contradiction all over again.”

Pamela picked up a handful of the cubes and
dropped them one by one back into the bowl. “So, as
fast as you keep getting a contradiction | just keep
adding more and more primes to the pot. I can always
keep one step ahead of you.” She grinned, confident
that she had him beaten.

But Reverend Matthews yielded no ground. In
fact he must have been about to deliver another
intellectual earthquake because he felt the need to
steady her arm again. “The point is Pam, you agreed
that we had all primes in our finite pot, and now that |
contradict you, you want to add another. That's hardly
fair.”

But Elisabeth came to her rescue. “Is it such a
sin to change one’s mind?”

“Look if it were a game of chess I’d be only too
glad to let her change her mind to correct an oversight.
But she can’t claim to be always one step ahead of me
just because | let her keep changing her move every
time she lands in trouble. Besides, finding a prime
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that’s not in the prime pot isn’t an oversight. We agreed
to define the contents of the pot to consist of all primes.
It’s just an inescapable contradiction. And any
assumption that leads to a contradiction must be false.
Q.ED.”

He appeared to think that this final blow would
require a little extra support and it didn’t matter that he
upset the sugar bowl in the process because those little
crystal cubes had served their purpose. Pamela dis-
played her discomfort at her intellectual position by
blushing brightly. She looked down at the spilt cubes
on the table as if pleading with them to deliver her the
inescapable conclusion of her argument.

At last she looked up into Reverend Matthews’
deep blue eyes and sighed, “I suppose you're right.”

But Elisabeth, who had becoming more and
more agitated while all this was going on, said tersely,
“I’m not so sure now. If believing in the Infinitude of
Primes stops people from changing their minds | think
I’d rather be an agnostic!”
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4. THE
UNCOUNTABLE

84.1. The Same-Number Balance

One might think that counting is the most
fundamental concept in all of mathematics. Yet, as we
have seen, it is a complex idea built on the even more
fundamental one of same-number-as. The one-to-one
pairing that defines same-number-as can play a similar
role as the old-fashioned beam balance.

This was a device that can only compare the
weights of two objects. By itself it can’t weigh things
absolutely. It merely shows you whether or not the
weights are equal. Pairing off in a one-to-one
correspondence is the balance we use for counting.

Two sets have the same-number-as each other if
it is possible to pair the elements of one exactly
with the elements of the other exactly.

The reason for the hyphens in ‘same-number-as’
is because it’s a single concept, like ‘balance’. As yet
we haven’t given an independent meaning to the word
‘number’. Once we do, we will be able to identify
‘same-number-as’ with ‘same number as’ in the sense
of each set having a number and those numbers being
equal.
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84.2. Standard Sets

A beam balance can

\552‘7 Vi @ be used for weighing things

[ 1] = absolutely, as distinct from

o ; comparing weights, only if
= & @ o we have a set of standard
& & weights. We need some 1

¥ gram weights and 5 gram

weights, and so on, perhaps
up to 1 kilogram weights. We put combinations of
these into one pan of the scales until they balance
exactly with the unknown weight. This enables us to
associate a number with the object that we call its
‘weight’.

&

Before we can count, that is, associate a number
with a set to represent its size, we need some standard
sets to use in the comparisons. In kindergarten we were
introduced to a system of symbols 1, 2, 3, ... and
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associated words. These ‘objects’ were initially
meaningless things that had a defined ordering. ‘Two’
comes after ‘one’ and then comes ‘three’ and so on. We
learnt to recite this list “one two three” as we would a
nursery rhyme.

What we were setting up in our brains was a
nested collection of standard sets (each fitting inside
the other for convenience by just stopping at different
places). These standard sets are:

STANDARD SET SIZE
{ } (empty set)
{1}

{1, 2}

{1, 2, 3}

{1, 2, 3, 4}

A WDNEFO

What we are doing when we count a set is to
select a standard set which pairs off exactly with it. The
size of the set is just the number associated with it. (For
finite sets it’s the last symbol in the list but when we
come to infinite standard sets we’ll need to invent new
symbols.)

Perhaps as adults we learnt to count in
sophisticated ways, grouping things together for
convenience. But if we go back to the primitive act of
kindergarten counting we point to each object in turn
and call out the next number in the sequence. The last
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number we reach will automatically be the answer to
the counting.

It’s important we get it quite clear what the act
of counting really means before we introduce our first
infinite number.

To find the number of elements in a set:
Find a standard set which can be put in one-to-one
correspondence with it.
The associated number is the answer.

84.3. The Smallest Infinite Number &g

Are you ready for your first infinite number? We
need a standard set and then a symbol to represent its
size. What better standard set than the set of all finite
numbers

{1,2,3,..}?

Now for a symbol. You see, we can’t use the last
element in the list because there isn’t one. We could
have used the standard ‘infinity symbol’, oo, but that
would suggest that this is the only infinite number
we’re going to get. Besides it’s not the symbol used by
Georg Cantor who first investigated infinite counting
around the end of the nineteenth century. He chose the
first letter of the Hebrew alphabet, N, and because it
was the smallest infinite number he added the subscript
‘0’. So our list of standard sets has been extended to the
following:
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STANDARD SET SIZE

{ } (empty set) 0
{1} 1
{1, 2} 2
{1, 2, 3} 3
23 56} ...... .&0

84.4. In Search of a Bigger Infinite
Number (Adding)

Now we begin our long journey, in search of an
infinite number bigger than X,. With finite numbers we
were always able to get a bigger number by adding one.

“My dad's played footy a trillion, trillion times!”
“My dad's played it trillion, trillion plus one
times!”

Let’s see if N + 1 is a bigger number than No. Well
it’s certainly not smaller. But could it be just as big?
Before we can answer that we must say what we mean
to add one to a number, in a way that makes sense for
infinite numbers.

When we were learning how to add such finite
numbers as 2 and 3 we possibly had a picture of two
ducks and three rabbits. Count the ducks. Two. Count
the rabbits. Three. How many animals altogether?
Before we learnt to add we would have had to count the
entire menagerie. One, two, three, four, five. The whole
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collection of animals matches exactly with our standard
set {1, 2, 3, 4, 5} and so its size is 5. We’ve
demonstrated that 2 + 3 = 5.

As time went on we learnt ways of adding
without counting. But if pressed for what it means for
37 plus 63 to equal 100 we would have to say
something like: “if you take 37 of one type of thing and
combine it with 63 of something else we get 100 things
altogether”.

Addition corresponds to combining two sets of
things together. But it’s important that the two sets
have nothing in common, otherwise we’re double
counting. So here’s our definition of the sum of two
numbers.

To add the numbers m and n:
(1) Take a set of size m.
(2) Take a set of size n.
(3) Ensure that these sets are disjoint (have no
common elements).
(4) Combine them into one set (take the union
of these disjoint sets).
(5) Put this union into 1-1 correspondence
with a standard set.
(6) The number of elements in this combined
set is defined to be m + n.

Let’s use this to calculate X + 1. First we take a
set of size X,. The standard set {1, 2, 3, ...} will do.
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Now a set of size 1. The standard set of size 1 is {1},
but these two sets have ‘1’ in common. So let’s change
the second set to {0}.

The union of these two sets is {0, 1, 2, 3, ...}.

Now this certainly appears to be bigger than the
set {1, 2, 3, ...} butis it? No. We can match {0, 1, 2, 3,
...} off exactly with {1, 2, 3, ...}. Just write out these
sets in rows and each number in the top row pairs off
exactly with the one below it:

o[ 1[21]3
(A S S
1 [ 2] 314

4 |5
2
5 [ 6

Since neither set has a last element, there is nothing in
one row without a mate in the other. According to our
definition, therefore, these two sets have the same
number of elements. In other words o+ 1 = Xg,

“But that’s absurd. If you add something extra of
course you make it bigger!” Careful, you're revealing
your parochialism. It’s just like someone who’s lived
all his life in some small outback country town. “Of
course, if you go into a bank they’ll know your name!”

You’re no longer in the finite backwoods you’ve
been in all your life. This is the big city of the infinite.
Some facts you’ve accepted as having universal
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application, you now find are just curiosities that only
work for finite numbers. Other things you’ve learnt do
extend to the infinite. What can you trust in this strange
new world? Just the definitions and logic.

So, contrary to naive intuition, you don’t make
an infinite number bigger by adding one to it. Our
search for a number bigger than X, has so far failed.
What about X¢ +N0?

For this we need two disjoint sets of size No. The
standard set {1, 2, 3, ...} will do for one of them and we
can take the negative numbers for the other:

{-1,-2,-3,..}.
We can set these out in a table with two infinite rows:

1 [ 23] 475
1] 2] 3]-4] 5

Surely these can’t be paired off with our standard
set for Xy. To do that we’d have to squeeze both infinite
lists into a single one. But that’s not difficult. Simply
take from each row alternately:

1,-1,2,-2,3,-3, ...
Nothing is left out, but now that they’re in a

single infinite list we can pair them off with our
standard set {1, 2, 3, ...}.
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1 |12 2]3]-3
I A T N 2
1 |2 [ 3] 4]516

Note that any infinite set which can be listed in
a single list has size Xo. We just pair the first thing in
the list with 1, the second with 2, and so on. Another
word that’s used for this is countable. A set is
countable if its elements can be listed. Countable sets
include the finite ones, as well as those sets which can
be put in an infinite list. Our goal is to find an
uncountable set, whose size will therefore be bigger
than No. So far we’ve failed.

84.5. In Search of a Bigger Infinite

Number (Multiplication)

We’ve not yet been successful in finding a
number bigger than X,. But we were only using
addition up till now —a much more powerful operation
is multiplication. Perhaps we’ll find that Xy x Ny is
bigger than No.

What do we mean by multiplication? Repeated
addition? But that won’t work with infinite numbers for
it would mean that Ko x No IS Ng + No + ..... with
infinitely many terms. Instead we use the idea of
ordered pairs.

A table with 5 rows and 7 columns has 35 cells.
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Each cell corresponds to a pair (r, c) where r is the
number of the row and c is the number of the column
in which it lies. It’s an ordered pair, that is, for example,
(3, 5) # (5, 3) because they refer to different cells. So
here’s the basis for a recipe for multiplying infinite
numbers.

To multiply two numbers m and n
(1) Take a set of size m.
(2) Take a set of size n.
(3) Form the set of all ordered pairs, with the
first item in the pair coming from the first set
and the second coming from the second set.
(5) Put this union into 1-1 correspondence
with a standard set.
(6) The number of elements in this combined
set is defined to be m x n.

Let’s use it to find 2 x 3 and see if we get the
answer 6. Take a set of size 2, such as the standard set
{1, 2}. Now take a set of size 3, such as the standard
set {1, 2, 3}. These sets aren’t disjoint, but that doesn’t
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matter for multiplication. The ordered-ness of the pairs
will keep them apart.

Now take all ordered pairs with the first item in
each pair coming from {1, 2} and the second from {1,
2, 3}. Here they are:

(1,1 1(1,2] (1,3
(2,1 12,2 | (2,3

and as you can see there are 6 of them. So we’ve
proved, using our definition of multiplication, that 2 x
3 =6, which is just as well! Our extended definition of
multiplication agrees with the way we've always
multiplied numbers but it gives us a way of multiplying
infinite numbers.

Now before we tackle Ng x Xy, let’s first try 2 x No.

First take a set of size 2. The standard set {1, 2} will do
but for a change we’ll take {+, —}.

Take a set of size &,. The standard set {1, 2, 3, ...} will
do.

The pairs (x, y) where X is a “+” or a “—" and y is in {1,
2,3, ...} can be put in a table as follows:

tD | *2 | *3
ED 2|3
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Obviously this is very little different to what we
had above and so
2xNo=No+ o=y
as we would expect. So we haven’t yet broken the N
barrier. But we still have & x No up our sleeve!

Take two sets of size Ny. Since they don’t have
to be disjoint we may as well take the standard set {1,
2, 3, ...} for both. Now form all ordered pairs. These
can be set out in a two-way infinite table:

(11 1)1. 1(11 2)_.> ' 3) v (1! 4)_|: (1! 5)
2,1)] (22) L4273) L) | (2,5)
(3, 1416372 1433) | (3,4 | (3,5)
G501 52| 53| 54| 5,5

Can we squeeze this into a single infinite list?
All we have to do is to list them by going along the
diagonals, starting in the top left-hand corner:

First comes (1, 1), then (2, 1) and (1, 2). Now across to
(1, 3) and down the next diagonal and so on.

As a single list this two-way infinite table can be
written as a single row:

(1,1), (2, 1), (1,2), (1, 3),(2,2), 3 1), (4 1), 3 2),
(2,3),(1,4),(1,5),(2,4), (2,3), ......
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No x &g elements, all written in a single infinite
list, means that 8o x 8o = Np. We still haven’t
succeeded in finding a number bigger than No. Notice,
by the way, that fractions can be represented by pairs
of whole numbers so the above diagonal process would
give us a way of listing all fractions. So while there
appear to be more fractions than whole numbers, in fact
the set of all fractions has size No, just as the set of all
whole numbers. Notice that a set can seem to be very
much bigger than another, but using the concept of
‘same size’ that we’ve adopted they can still have the
same size.

Perhaps this apparent paradox disturbs you.
Perhaps you say that this definition of ‘same size’ is the
wrong one. Feel free to make up your own definition if
you like. However you won’t be able to develop the
very rich theory of infinite numbers that Cantor did and
you’ll miss out on a large chunk of the mystery of the
mathematical infinite.

84.6. The Search for a Bigger Infinite
Number (Powers)

If we can’t find a number bigger than X, we’ve
made a lot of fuss for nothing. But in fact we’re just
about to reach our goal. Raising numbers to powers is
much more powerful an operation than either addition
or multiplication. For example 10 + 10 = 20, 10 x 10 =
100, but 10*° = 10000000000.
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You might like to try NXoNo, but instead we'll

settle for 20, which is easier to discuss and is just as
big.

How can we give a meaning to 2" for any
counting number n. Multiplying 2 by itself n times is
satisfactory for finite n but not if n is infinite. The secret
to the correct definition lies in the concept of subsets.

One set is a subset of another if everything in the
first set is an element, or member, of the second set. For
example the set of all women in the world is a subset
of the set of all people.

We allow a set to be a subset of itself, so the set
of all people is another subset of the set of all people.
We even include the empty set as a subset. The set of
all people who are over 1000 years old is a subset of
the set of all people. It’s just that it happens to be
empty.

Take a set with two elements, say {1, 2}. How
many subsets does it have? Well, what are the subsets
of {1, 2}? First there’s the empty set { }. then the
subsets {1}, and {2}, and finally the set itself {1. 2}.
There are 4 subsets. This will be true of any set with 2
elements.

Take a set with 3 elements such as {1, 2, 3}.
What are the subsets? They are:
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{} {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and then finally
{1, 2, 3} itself. How many? Eight.

So a set with 2 elements has 4 subsets, a set with
3 elements has 8. Is there a pattern? Yes, a set with n
elements has 2" different subsets, at least if n is finite.

A quick way to see this is to consider that each
subset corresponds to a decision for each element
whether or not it is to be in the subset. Imagine a
sergeant lining up his men and asking for volunteers for
latrine duty. In true military fashion it’s the sergeant
who does the volunteering. As he goes along the row
of men he says, “you’re in, not you, nor you, yes [ want
you, no, no, no, yes, ...}. There are n choices, each a
choice from two alternatives, so altogether there are 2"
possible subsets. Now this, which is a fact for finite
numbers, can be taken as the definition of 2" for infinite
numbers.

To raise 2 to the power n
(1) Take a set of size n.
(2) Form the set of all its subsets.
(3) Put this union into 1-1 correspondence
with a standard set.
(4) The number of elements in this combined
set is defined to be 2".
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84.7. The Number 2%o is bigger than ¥

Powers of 2 grow quickly and it is a simple fact
that 2" is bigger than n, for finite n. But we’ll show, by
a cunning argument, that 2" is bigger than n for all
numbers, n, finite or infinite.

Showing that 2" is bigger than n involves two
steps. We’ll first prove that 20 is bigger than No.

280> Ko

“At least as big as” means finding a way of
pairing off all the elements of a set with some of its
subsets. That’s easy — you just pair off each element in
the set with the corresponding set with one element.
The elements of {1, 2, 3} can be paired off with some
of its subsets, namely 1 < {1}, 2 & {2}, 3 & {3}.
The fact that there are subsets left over, such as {1, 2}
etc, shows that 2" is bigger than n, for finite n, but, as
we have seen, having things left over after a pairing
doesn’t necessarily mean ‘bigger’ because there could
be another pairing that leaves nothing over.

280 = N

The proof that 280 and N, are different runs
along very familiar lines. We suppose that 280 = K,
and get a contradiction. So suppose then that 20 = .
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Let N be the set {1, 2, 3, ...}. This has size No.

To say that 280 = X means that there must be an exact
pairing off of the elements of N with its subsets. Every
element has a corresponding subset and vice versa.

For a given number n, one of two things will be
true. Either n belongs to the subset that it corresponds
to, or it does not.

For example one of the subsets of N will be N
itself, and of course the corresponding element belongs
to it. At the other end of the scale, one of the subsets is
the empty set and the corresponding element cannot
belong to it.

If, for example, 3 corresponds to the set {1, 4, 5}
then 3 will not belong to the set that it corresponds to.
If 7 corresponds to the set of all odd numbers then 7
will belong to the set it corresponds to.

Suppose we call those elements which belong to
the subset they correspond to, internal elements. Those
which lie outside their corresponding subset will be
called external elements. So in the hypothetical
examples above, 3 will be an external element and 7
will be an internal one.

In symbols, if we denote the subset that
corresponds to the element x by S(x), and use the
symbol ‘€’ to denote ‘is a member of” and ‘¢’ to
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denote ‘is not a member of’, then we can describe these
properties of being internal and external as follows:

x is internal if x € S(x)
x is external if X ¢ S(X)

Of course whether an element is internal or
external would depend on the particular one-to-one
correspondence. But if somebody claimed to have a
way of pairing off all the elements of a set with all of
its subsets (rash claim!) it’s perfectly reasonable to
expect that they could tell us whether any given
element is internal or external.

Suppose, for argument sake, that somebody
claimed to have paired off all the elements of {1, 2, 3,
...} with all of its subsets. Then, in principle, they must
have a list such as the following:

1 {11, 32, 117}

set of powers of 2
empty set

set of all multiples of 3
set of prime numbers
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If this was indeed such a list then 1, 3, 4 and
185367 would be external. They would lie outside their
corresponding set. The elements 2, 5, 3427 would be
internal. If somebody claimed to have such a list it
would also be reasonable, in principle, for us to ask
where the set of all external elements appears in the list
- what number does this set correspond to? There is
such a subset and so if the pairing is exact, as claimed,
there’s a corresponding element. In the above example
we are supposing that it’s 673867.

Is 673867 itself an internal number or an external
one? It has to be one or the other.

If it’s internal then it belongs to the set that it
corresponds to, that is, it belongs to the set of all
external numbers which would make it external. That’s
nonsense. But, if it’s internal, then it’s external. So it
can’t be internal.

But wait! If it is external, it’s a member of the
set of external numbers. So it does belong to the set it
corresponds to. But this would make it internal! That’s
nonsense too!

If it’s internal then it’s external. If it’s external,
it’s internal. One big resounding contradiction! And
that contradiction all rests on the assumption that we
started with, that the elements could be paired off with
the subsets. Therefore they can’t be. That is, the
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number of elements of any set cannot be paired off
exactly with the subsets.

This argument can be used for any set.

THE ELEMENTS OF A SET CANNOT BE
PAIRED EXACTLY WITH ITS SUBSETS
Suppose the elements of a set are paired off
exactly with its subsets.
Let S(x) denote the subset that corresponds to x.
Let Y be the set of all x such that x ¢ S(x).
Let y be the corresponding element.
So S(y) =Y.
Ify € Y then by the definition of Y,y ¢ S(y),
thatis,y ¢ Y.
Andify ¢ Ytheny ¢ S(y)andsoy e Y.
This is a contradiction, which tells us that such a
1-1 pairing is impossible.

84.8. The Universe of Infinite Numbers

So 280 is bigger than No. We’ll call it Ni.
Actually N is usually defined to mean the next infinite
number after &,. But nobody knows whether that is
280 or not. So it seems reasonable to define N to be
280, But if we do that, what if somebody finds an
infinite number between No and 2N0? We’d then have

to call it &, or something like that. Relax! That will
never happen. Nobody will ever find any numbers

between Ko and 280. How can we be so sure? Because
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it has been proved that the existence of something
between the two is unprovable. Surely that means there
aren’t any! Not exactly, because nobody has been able

to prove that the next number after N is indeed 2No.
What’s more, nobody ever will because a proof exists
that shows that it is impossible to prove the next

number after N is 2No!

Amazing stuff, but all quite logical. We can
prove that the statement that there’s no number

between &% and 20 can never be proved. We can also
prove that the statement there is a number between Ny

and 280 can never be proved. The question is
undecidable.

The statement that nothing exists between N,

and 280 is called the Continuum Hypothesis. It’s an
hypothesis, not a fact. But it isn’t a conjecture that will
be settled one day. It will forever remain an hypothesis.
You could say that whether it is true or not is a matter
of faith.

“I believe in the Continuum Hypothesis,” your
creed might run. Fine. That’s perfectly consistent with
everything else we know about mathematics. But the
opposite view is equally logical. | suppose the proper
stance to take would be that of an agnostic.
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On the other hand, even though it can never be
proved, there’s a metalogical argument in favour of
believing in the Continuum Hypothesis. Since nobody
will ever find an actual example of a number between
the two (for if they did the matter would be decidable)
then for all practical purposes there isn’t one. Though
this falls short of an actual rigorous proof of non-
existence, it seems a reasonable position to take and
that is the position that most mathematicians take. We
are believers in the Continuum Hypothesis.

So taking &1 to be 280 we can then use the same

argument as above to show that 21 is bigger than &
and so on. That means there is a whole infinity of
infinite numbers:

No, N1, N2, X3, Ny, ... each bigger than the one before.

If we set out to construct a catalogue of numbers
we would start with two rows in our table:
0 |1 |2 |3 |4

NO Nl NZ N3 N4

But, as they say in the TV advertisements for
steaks knives, “there's more!” If you take a whole
collection of sets, one for each of the infinite numbers
in the second row of this table, and combine all these
sets into one huge set (we call this “taking the union”)
the size of that set will be at least as big as any number
in the row, and hence must actually be bigger than
anything in the row (think about it!). This will then give
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us a number bigger than anything in these two rows, so
we can use it to start a third row.

But then by taking successive powers of 2 we
can work our way along the third row to produce a third
infinite sequences of infinite numbers. But wait, there’s
more. In the same way we got from the second row to
the third we can get from the third to a fourth row, and
a fifth and so on.

So our catalogue of numbers, all but the first row
being infinite, now covers an entire infinite page, with
infinitely many infinite rows. But there’s still more.
There exists a number bigger than any number on the
page and so we can start a second page, and a third, and
so on until our catalogue occupies infinitely many
pages, each with infinitely many infinite rows.

But why stop at one such volume. We can have
infinitely many volumes on an infinitely long shelf, and
infinitely many such shelves .... The human mind is a
wonderful thing to be able to conceive, and even think
logically about, such expansive concepts.

Is there any practical use to all this? Such a
question brings us back to earth with a thud, even
though the answer is “yes”. Mathematicians have a real
use for knowing about Ny, N; and to some extent about
N2. We could live without the others. The number X
Is the number of points on a line, or the number of real
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numbers. The number X, is the number of functions
from the set of real numbers to itself.

Where does ¥,No fit into all this? Is it bigger
than 2X0? No, in fact it can be shown that it’s just the
same as 2No.
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INTERLUDE: RADIO
FEATURE
“Beyond the Finite”

MUSIC: Also Sprach Zarathustra by Richard Strauss

MALE VOICE: Beyond the familiar numbers 1, 2, 3,
.. of the kindergarten, beyond the hundreds of the
cricket scoreboard, beyond the millions, tens of
millions, millions of millions of economic statistics,
beyond the billions of billions, billions of billions of
billions of astronomy ... beyond all finite numbers, lies
... the infinite!

Man, imprisoned though he is in a finite world,
is able to glimpse the infinity beyond, through the tiny
barred windows of religion, philosophy and
mathematics.

FEMALE VOICE: Infinity is an ideal that one can
approach but never reach.

PRESENTER: This popular view of the infinite has
grown out of the mathematical concept of infinite
limits which underpins the calculus, but it’s not the
only insight that mathematics can give us into the
nature of the infinite. A somewhat more recent
development, though known to mathematicians for
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over a hundred years, has yet to make its imprint on the
popular mind.

In the 1890s, Georg Cantor extended the concept
of counting to infinite collections and came up with a
theory of transfinite numbers. Not just a single
unattainable infinity, but a whole infinity of bigger and
bigger infinite numbers.

To appreciate this mind-boggling concept | want
you to come with me on a journey — a journey of the
imagination — a journey beyond the finite to the infinite
world of Infinland.

MUSIC: Enigma Variations by Edward Elgar

k*khkkhkkhkkkkhkkhkkhkkhkkikkhkkkikkikkkikkkikkikkk

Once upon a time there was, in a far-off place, a
kingdom called Infinland in which there lived a race of
creatures, rather similar to men only much smaller,
called Infins. There was nothing very remarkable about
these Infins except that there were infinitely many of
them. I don’t mean that their population was exploding
at an ever-increasing rate, approaching infinity. It was
infinite and always had been.

Infins were happy little creatures. And so they
should be for their infinite land was ideally suited to
cope with an infinite population. There were none of
the annoying shortages that we experience in our
overcrowded world.

Take housing for example. Every Infin had his
own house. When a pair of young Infins got married
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and left home, they were allowed to choose any house
in the kingdom. Never mind that it was already
occupied. The family living there, and all those beyond
that point on that side of the infinitely long street, were
obliged to move up to the next house to make room.
Because the street was infinitely long there was no last
house in the street to be pushed off the end. A
marvellous system! You and I might resent the frequent
moving, but the Infins had never known any other way.

They all lived on both sides of two roads — East
Road and West Road. Each of these stretched for ever,
east or west. To the north and
south of these roads were the
royal gardens belonging to King
Aleph Il. These, too, stretched
for ever to the north and to the
south. Situated right between
East Road and West Road was
the castle of King Aleph. So that
the inhabitants East Road could
! have contact with those on West
Road the Kking very kindly
provided a right of way across
the castle grounds — for which
he charged a modest toll.

Now the Infins had not
always lived on East Road or West Road. In fact once
the Infins’ houses had completely covered what were
now King Aleph's fields. Then, the castle in the middle
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enclosed a modest garden within its walls. Around this
ran the road called “The Circle”. From this stretched
the North Road, the South Road, the East Road and the
South Road — all going on forever out from the castle.

These were the major highways of the kingdom,
but the whole area was crossed by a network of minor
roads as well. Some ran north and south and others east
and west. All roads stretched on forever in both
directions.

One day, King Aleph decided that his modest
garden was not big enough. He decreed, therefore, that
henceforth Infins must only I|ve on elther East Road or
West Road. ;

In any ordinary &
kingdom this would have
created a severe housing ”;
problem. However, as the
Infin kingdom was infinite !
it was possible to rehouse
everybody on either East [
Road or West Road. On the =
day appointed, the King sent a messenger around the
kingdom.

Starting with the houses nearest the castle, he
travelled in a spiral fashion around the castle, moving
further out all the time. Calling at each house
(including those already on East Road or West Road)
he gave out their new addresses in order, alternating
between East and West Roads.

Travelling in this spiral fashion, the messenger
was able to call upon every house. In an ordinary
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kingdom this would have taken him forever. In fact he
would have never got to the end. But Infins can move
infinitely quickly if they have a mind to and so the job
was done in next to no time at all. And because there
were infinitely many houses on East Road and West
Road he never ran out of new addresses to give the
families.

The traffic chaos was unimaginable as families
moved to their new houses. Even families already
living on East or West Roads were unhappy about the
change for they had to move much further out.

All the houses left unoccupied were demolished
and the land became gardens for the king’s private use.
Since that time traffic on East Road and West Road has
been in a permanent state of chaos and Infins who had
once been close neighbours now lived vast distances
apart.

This mean and despotic act was just one of the
many carried out by King Aleph Il. As you may have
gathered, the King was very unpopular. Yet he was
allowed to rule as the people respected the ancient
charter laid down by the much-loved grandfather of
King Aleph 11, Aleph Zero. In this charter it was laid
down that his descendants would be entitled to rule so
long as they carried out their duties as Lord of
Committees.

That’s another peculiar thing about the Infins —
their love of committees. They liked nothing better than
forming committees. They formed committees at work
and committees at school. Every Infin family was
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organised into committees and subcommittees and sub-
sub committees.

Infins waiting at bus-stops would immediately
elect a chairman and ask
for the minutes of the last
meeting to be read out.

Another curious
feature of the Infin
committees is that the
identity of the committee
depended solely on the
collection of Infins present. If any Infin was absent
from a regular meeting the committee was deemed to
be a different one. This made the call for apologies
redundant because, by definition, every member was
automatically present. But it did complicate the reading
of the minutes because they had to recall when and
where and under what circumstances that exact
collection of Infins last met. A committee that met by
chance at a bus-stop one day may have had exactly the
same membership as the one that happened to be in the
same laundromat on the same day many months
previously and so constituted the same committee.

The King, as Lord of Committees, had the
statutory right and duty to choose a chairman for every
committee. However he had to respect the rule, laid
down by Aleph Zero:

No Infin may be chairman to more than one
committee.
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So long as he carried out this task the Infins
allowed him to continue to rule. But if he ever defaulted
he lost the right to rule.

Now Infins are notorious for their poor
memories, the King included. So it often happened that
he forgot that he had chosen a certain Infin previously
and made the mistake of choosing him to chair a totally
different committee. The trouble is that although Infins
often thought they could remember that someone had
doubled up, they couldn’t quite be sure. And although
they always took minutes of their meetings, they were
so disorganised that they could never find them later
when they needed them.

So the King continued to get away with his
ineptitude. He made out that he consulted a large
volume in which he had written down all possible
committees and his chosen chairmen but the truth was
that he just chose the first name that came into his head
or, if he couldn't remember any name he just pointed to
someone and said, “you there, I appoint you”.

The chairman could be, and often was, chosen
by the King from within the committee. Such a
chairman was called an internal chairman. At other
times the King chose a chairman from outside, known
as an external chairman.

An external chairman was not actually co-opted
because changing the composition would change the
committee into a quite different one which would of
course require a different chairman. No, the Infins were
not so stupid as to allow themselves to be caught in a
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recursive trap like that. An external chairman chaired
but always from the outside.

Now although he usually made a random choice,
King Aleph was occasionally put in the position of
having to be very crafty in his choice. Once, in an
attempt to overthrow the King, the Infins called
together a committee consisting of everybody except
the King. The King clearly could not suffer the
indignity of being the only one excluded and so he
chose himself as external chairman of that committee.

Another attempt was made to overthrow the
King by Count Able, one of the noblemen of the
kingdom. Count Able maintained that King Aleph
constituted a committee of one and asked the King to
select a chairman. Now King Aleph remembered that
he had nominated himself as external chairman of the
Every-One-Except-The-King committee, and just in
case Count Able remembered that too, he thought it
safest to select an external chairman. So he chose
Count Able himself as that external chairman. And, for
his insolence he cast Count Able into solitary
confinement in the dungeons. As he was being dragged
off he screamed for the King to appoint a chairman of
the Solitary Confinement Committee that consisted of
just Count Able. You see, he couldn't be named as an
internal chairman — he was already external chairman
to the Kings-Of-Infinland Committee and he hoped that
whoever got to be external chairman might be able to
help him escape.
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Of course the King merely appointed the soldier
who kept guard outside Count Able’s cell as external
chairman so such hopes of escape came to naught.

Nothing ever lasts for ever, not even in Infinland,
and eventually Count Able was released. But during his
confinement he had hit upon a cunning plan to trap the
King.

He called a meeting of the Every-One-Except-
The-King Committee. Of course, as external chairman,
the king had to come too. So the whole infinite
population of Infinland crowded into the Great Meeting
Hall of the castle. Count Able respectfully asked leave
to put a question to the King, and leave was granted.

“Oh noble King, Lord of Committees, you have
the royal privilege of choosing chairmen for all
committees both actual and potential.”

“Indeed I do. I have it all written down in my
Book of Chairmen here.”
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“And most noble King, you may not choose the
same Infin to chair more than one committee.”

“Quite right. That's why I have it all written
down.”

“So nobody can possibly be both an external and
an internal chairman.”

“Certainly not for that would violate my
grandfather’s charter and I would lose the right to rule.”

“So you would be able to consult your book and
tell us who among us you have chosen to be external
chairmen.”

“That is so. At the back of the book I have an
index that lists the name of every Infin and next to those
whom | have honoured by choosing them as chairmen
I have recorded the letter ‘E’ to denote that they are an
external chairman or ‘I’ to denote an internal
chairman.”

Of course the King was making all this up. The
great book was completely blank but nobody was
permitted to look inside. However the more he said the
more poor King Aleph was playing into Count Able’s
hands.

“Then I wish to call a meeting of the Committee
of all External Chairmen. Would your highness please
read out the names.”

The King should have insisted that this would
take too long but, eager to demonstrate his power as
Lord of Committees he foolishly co-operated far too
readily.

“Certainly,” he said lifting up the great book and
indicating a line of division. “You my people on my
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right are the external chairmen of Infinland — oh, plus
myself and Count Able. All others are dismissed.”

Half of the Infins present filed out muttering.
Many of them half-remembered having been appointed
external chairman of some committee in the past but
their memories were not sufficiently strong to
contradict the King. Someone else remarked on the
extreme coincidence of the external chairmen
happening to be all standing on one side. But even an
extreme coincidence is not a water-tight proof of fraud,
not if it’s the King who is supposed to be guilty.

“So your Infinite Majesty we here comprise all
the external chairmen of your kingdom. You’re sure?”

“Of course I’'m sure. It’s all written down in my
book.”

“Each one of us is the external chairman of
some committee?”

“That’s what I said.”

“And those who've left are either internal
chairmen ...”.

“... or they’re not chairmen of anything”. The
King finished that sentence but he had no idea of the
next one!l

“Then I ask you, as Lord of Committees to
appoint a chairman of this present committee.”

The king pretended to consult his book while he
thought this out carefully. He sensed a trap but he knew
he was safe because of the incredibly bad memories of
Infins. If he couldn’t remember whether this present
collection of Infins had ever assembled before nor
could anyone else. So even if he was inconsistent with
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what he had done in the past nobody would be able to
remember. No he was quite safe.

He was just about to point to the nearest Infin
and announce that he was chairman when the thought
struck him. That would make him an internal chairman
but no internal chairman remained. He’d confirmed
that just a moment ago. The memory of an Infin is bad,
but it’s not that bad! They could all remember that only
external chairmen remained.

That was close. He’d nearly put his foot in it. But
fortunately he was a match for Count Abel. All he had
to do was remember the name of someone who’d left.
He consulted his completely blank book.

“I appoint the last Infin who left as the chairman
of this committee.”

Count Able had him, and King Aleph knew it as
soon as he had said this. The King hid his face behind
the book to hide his blushes.

“So if he’s not here, that would make him an
external chairman of this committee. But all external
chairmen are present in this hall. Q.E.D.”

Immediately there was an uproar and the Infin
Revolt had begun. Very few Infins knew what the
letters Q.E.D. stood for but they had been told that
those three letters would be a sign that the revolution
had begun. Perhaps Q.E.D. meant “Quick, everyone
destroy” because they did just that. The castle was
destroyed and Count Abel was declared the next King.

At his induction he made just two conditions to
his accepting the crown.
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“I ask two things as your new King. Firstly 1
wish not to assume the duties of Lord of Committees
and secondly | ask that throughout the rest of my life |
be granted ownership of any house on West Road
which is situated next door to one that I already own.”

The Infins thought that both of these were very
reasonable requests and the Count became King.

What the Infins had forgotten was that, although
Count Abel would now be living in the castle, as king
Aleph 111, he already owned number 31761 West Road.
So now at his induction he was now to granted
ownership of number 31763 West Road. But that then
meant he had to be granted ownership of number
31765, and so on.

Somebody said something about this being the
Principle of Induction. But King Aleph Il was much
more gracious than the deposed Alep Il. He said that all
those living on the odd side of West Road didn’t have
to move. They could rent the house they were living in.
Moreover the rent was infinitesimal, so everyone was

happy.

157



158



5. THE
UNIMAGINABLE

85.1. How Do We Know That The Earth Isn’t Flat?
“The world is flat and the
greatest hoax of history is the belief
that it’s round.” I remember hearing
this many years ago when | was at
university. The claim was made at a
lunchtime lecture given by a
representative of the Flat Earth
Society. Everyone in my physics
class went along to heckle this ‘nut’.
But we were stunned by the fact that
he appeared to know far more physics than we did and
every objection that we raised was answered by the
most convincing and authoritative of explanations.

The belief that light travels in straight lines is the
illusion, he said. Ships appear to disappear over the
horizon because the light is bending. And the fact that
nobody has ever reached the edge of the world is
because the closer you come to it, the smaller you
become and the more slowly you travel while
maintaining the illusion of constant speed. We’d heard
of the Theory of Relativity and the lecturer’s
explanations seemed to be consistent with the very
vague understanding we had of that theory.
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We began to believe that he might just be right!
No doubt this was partly due to the heavy atmosphere
in the lecture theatre and to his charisma. As we walked
out we felt that he was probably wrong but we were no
longer sure we could prove that he was.

Now of course nobody who has ever walked up
and down mountains believes that the world is quite
flat. Nor is it as perfectly round as a mathematical
sphere. It is, after all, slightly flattened at the poles and
its surface is somewhat distorted by mountains and
valleys. When the flat-earthist says that the world is flat
he means that it is essentially a flat disk, but one that
may be distorted in some way like a piece of rubber that
has been stretched and rippled. We round-earthists
likewise assert that the surface of the earth is essentially
a sphere but concede that it is actually somewnhat
distorted. The difference between a disk and a sphere
is not simply one of shape or curvature. It’s
‘topological” — it has to do with the way the surface is
connected.
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The surface of a sphere can be distorted into
many different shapes but without tearing it can’t
become a disk. A disk can be bent to form a hemisphere
or even stretched till it becomes a sphere with a little
round hole. But only by sewing up the hole (the reverse
of tearing) could it become a complete sphere.

The difference between a ‘flat’ earth and a
‘round’ earth is a topological one. Consider the
following conceptual experiment. Place a rubber band
around the base of the North Pole (assuming it to be an
actual pole hammered into the ice — or if there is no ice
left there we might need to float a stick on a buoy).
Now imagine that this rubber band is enormously
elastic and can be stretched as much as we want. Is it
possible, by stretching the band, but without breaking
it, and keeping it at all times in contact with the earth’s
surface, to free the band from the pole?

The answer depends on which topological model
you accept for the surface of the earth. If it’s
topologically a sphere, the answer is “yes”. All you
have to do is to stretch the band over the surface until
it runs right around the equator. Then continue moving
it south, keeping it in contact with the surface of the
sphere at all times, and let it shrink again as it moves
towards the South Pole. Now back to its original size it
can be slid back north till it lies right beside the North
Pole — no longer enclosing it.
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But if the earth is topologically flat then there’s
no way it could be freed from the pole. No matter how
much the band is stretched, the pole will remain
‘inside’. It’s tempting to say that we could stretch the
band till it runs right around the boundary of the disk
and then roll it onto the other side. But remember that
if the earth is really flat there is no other side, or at least
it doesn’t belong to the surface of the earth. So this is a
topological way of distinguishing a sphere from a disk.

To decide which model fits the earth we just
have to carry out this experiment. But there’s no need
to have an actual band that can be stretched so much.
The circles of latitude represent the successive
positions of such an elastic band moving continuously
over the surface. Our flat-earthist might question the
validity of the circles of latitude and so remain
unconvinced. However the aim of this introduction is
not to settle the geographic question but to ask
topological ones.
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On the other hand the earth might be neither a
topological disk nor a sphere. Perhaps it’s really a
doughnut (or to use the more mathematical word, a
‘torus’). Let’s leave aside the objection that if so then
one part of the world would cast a shadow on the other.
This depends on certain assumptions about light and
leads us away from topology and back into physics. If
we lived on the surface of a torus and had no experience
of anything above or below the surface, how could we
tell that it wasn’t the surface of a sphere? After all you
can circumnavigate both a sphere and a torus by
travelling in what appears to be a straight line.

In other words we’re asking for a topological
difference between a torus and a sphere or a disk. The
infinite elastic band experiment works for the sphere
but not for the torus (remember that every part of the
band must always remain in contact with the surface at
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all times). But it can’t distinguish a torus from a disk.
This calls for a different conceptual experiment — the
Great Wall Experiment.

Build a great wall on the surface of the earth so
that its two ends meet. This amounts to drawing a
closed curve on the surface. Those inhabitants inside
the wall are safe from the savage hordes outside ... or
are they? What if the surface of the earth is a torus
(doughnut shape) and the wall is built around the
smaller radius? The enemy is safely on the other side
of the wall, until they wake up to the fact that all they
have to do is to travel around the larger radius. Here we
have a closed curve that doesn’t separate the surface
into an inside and an outside. This can happen on a
torus but it can’t happen on a disk or a sphere.

OUTSIDE

With the torus, which side of the wall is inside?
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§5.2. Do Parallel Lines Exist?

Parallel lines are lines that don’t intersect. Of
course it’s easy to have line segments that don’t meet
but, if we extended them far enough, they might. Here
we’re talking about whole lines, extending indefinitely
in both directions.

In the normal Euclidean plane there are indeed
pairs of lines that don’t intersect. We just have to draw
them so that they’re exactly the same distance apart all
the way along. It might be difficult to do this precisely.
But, of course, we’re talking about an imaginary ideal
Euclidean plane where things can be as exact as we
want them to be. So the answer to that question is an
casy “yes” — parallel lines do exist in the Euclidean
Plane. Or, to put it another way, there are pairs of lines
that have no point of intersection.

On the one hand it’s true that through any two
distinct points there’s exactly one line. There are no
exceptions here — any two distinct points determine a
line. But it is not true if we reverse the role of lines and
points. It is not true that any two distinct lines intersect
in exactly one point. There are exceptions — parallel
lines.

We have a similar situation here to what existed
with the real number system. It isn’t true that every real
number has square roots. At least it wasn’t true until we
invented imaginary numbers. Perhaps we can invent
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imaginary points where parallel lines can meet. Indeed
we can. We enrich the Euclidean plane by inventing
extra imaginary points — only they’re called ‘ideal
points’.

For every direction we invent an ideal point and
decree that all lines in that direction pass through the
corresponding ideal point. But are we allowed to make
such a decree? Indeed we are, provided that the
geometry we produce is consistent — that is, provided it
doesn’t lead to any contradictions. So the concept of a
line passing through a point will be just the ordinary
one if the line and the point are ordinary points on the
Euclidean plane. But if the point is an ideal point,
‘passing through’ will mean that the line is in the
direction that corresponds to the ideal point.

It would help if we could see what is going on in
pictures. We can’t draw the infinite Euclidean plane on
a finite sheet of paper, but we can represent it by a
rectangle drawn in perspective.
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We call the points on the Euclidean plane ordinary
points.

We call the lines on the Euclidean plane ordinary

lines.

We sort these ordinary lines into parallel classes.

VA

/

/

S

A parallel class consists of a line together with all lines
parallel to it.
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For each parallel class we invent a new point, called an
ideal point.

N\

These ideal points don’t lie on the Euclidean plane.
Where are they then? The answer is simply “in our
minds”. However, to assist our imagination, we can put
these ideal points on our diagram outside of the shape
that represents the Euclidean plane.

As well as ordinary points lying on ordinary lines in the

usual way
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we decree that all lines in a given parallel class (and no
others) pass through the corresponding ideal point.

We also invent a new line called the ideal line

=y

and decree that this line passes through all the ideal
points (and no others).

-
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The resulting geometry is called the Projective plane.
It contains all of the Euclidean plane, as well as the
extra ideal points and the ideal line. Any theorem that
we can prove for the Projective plane will be true for
the Euclidean plane simply by taking the points and
lines to be ordinary ones.

85.3. The Projective Plane Has No

Parallel Lines

Now that we’ve invented the ideal points and
lines, our Projective plane has no parallel lines. Any
two distinct lines meet in exactly one point. There are
no exceptions. If the two lines are ordinary lines they
meet in an ordinary point in the usual way, provided
they’re not parallel in the Euclidean plane. But if they
are parallel there we’ve invented an ideal point in
which they can meet.

But what if one line is ordinary and the other is
the ideal one. No problem. The ordinary line has a
certain direction and passes through the ideal point that
corresponds to that direction. And of course both lines
can’t be ideal as there’s only one ideal line.
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But before we get too excited we might have lost
the first property in trying to fix up the second. Is it still
true that through any two distinct points there is exactly
one line. Let’s think it through, case by case.

If the two points are ordinary they lie on exactly
one ordinary line, in the usual way. They can’t also lie
on the ideal line (that would make a second line passing
through both) because the ideal line has only ideal
points.

What if one point is ordinary and one is ideal?
The ideal point will correspond to a certain direction.
And through any point in the Euclidean plane there is
exactly one line in any given direction.
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Finally, if both points are ideal then they lie on
the ideal line. Could they lie on an ordinary line as
well? Well, no. The two distinct ideal points would
correspond to two distinct directions and that would
mean that the ordinary line would go in two directions
at once.

85.4. Can We Describe The Projective

Plane Precisely?

When we observe a long straight railway line,
receding into the distance, it looks as if they meet on
the horizon. Renaissance artists had no problem with
the concept of parallel lines meeting a point. This
happens all the time in a perspective drawing.

D
\%*\:b

Consider what an artist does when he
sketches a scene. You might think that he represents
points in the scene by points on the canvas, but it would
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be more accurate to say that he represents rays not
points. Every ray emanating from his eye corresponds
to a single point on his canvas. This leads to the next
way of thinking about the real projective plane.

We start with 3-dimensional space and choose a
plane, which we call the ‘canvas’ and a viewpoint lying
away from the ‘canvas’ where we place an ‘eye’.

The plane is a complete Euclidean plane (rather
larger than the average canvas!). We now define a
projective point to be a line through the eye. In
practice the artist can only see what’s in front of his eye
but it suits us to use whole lines rather than rays.

« Projective
point

Every point on the canvas corresponds to a
projective point but there are some projective points
left over that don’t correspond to points on the canvas.
These are the lines through the eye that are parallel to
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the canvas. These will lie on the plane through the eye
that is parallel to the canvas plane.

Projective point
that does not eye

correspond to an \S\

ordinary point on
the ‘canvas’.

It may seem strange to call something a ‘point’
that we’d normally call a line. That’s why we add the
prefix ‘projective’. It bumps things up by one
dimension. The rationale behind it is that a projective
point (line through the artist’s eye) would appear as a
single point on the artist’s canvas.

We now define a projective line to be any plane
through the ‘eye’.

Projective line

that corresponds to .
an ordinary line on

the ‘canvas’.

1 uie arust paints two parallel lines on his canvas
they represent two projective lines in space (that is,
planes through the artist’s eye). It’s a fact of 3-
dimensional Euclidean space that any two planes
through a single point must intersect in a whole line.
Moreover that line will be parallel to the plane that
contains the two lines.
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Just open this book and hold two consecutive
pages so that the edges are parallel. These pages will
intersect in a line that runs along the spine of the book.

projective lines that
correspond to
parallel lines on the
‘canvas’.

This ordinary line in 3-dimensional space, being
parallel to the canvas, will not intersect the canvas and
so will not correspond to any ordinary point on the
‘canvas’. So we can see that, while most of the
projective points (lines through the eye) will
correspond to ordinary points on the ‘canvas’, and all
but one of the projective lines (planes through the eye)
will correspond to ordinary lines on the ‘canvas’, we
have here a model of the Projective Plane. The ideal
projective line is the plane through the eye that is
parallel to the canvas and the ideal projective points are
the lines through the eye on this plane.

But once the canvas is removed the distinction
between ordinary and ideal is removed. The Projective
Plane can be considered as a single point O, all lines
through O (the projective points) and all planes through
O (the projective lines). This model looks rather like a
porcupine. (The following picture should be viewed in
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3 dimensions with lines pointing in and out of the

B2
2

85.5. Can We Draw The Projective

Plane on Paper?

There’s a rather clever way of drawing the
Projective Plane on a piece of paper. Let’s begin by
drawing the surface of a cylinder. The usual picture is
something like this.

That’s not a bad picture for those who can
visualise 3 dimensions, but imagine it from the
perspective of a tiny microbe moving around the
surface, with no concept of up and down. Locally it
looks no different to the Euclidean plane. A microbe
who’s lived on a flat piece of paper will probably notice
no difference when it’s transported to the surface of a
cylinder. Until, that is, it goes on a long journey and
circumnavigates the cylinder.
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“That’s strange,” it might say to itself, “I
travelled in a straight line and came back to where |
started. That never happened on the sheet of paper.” It
might decide to draw a map of the cylinder as follows:

What this is supposed to mean is that a cylinder
Is basically a rectangle except that if you get to the
right-hand side you are spontaneously transported to
the left-hand side. The left and right are to be
considered the same.

Indeed if you were to cut out the rectangle and
bend it to make the left-hand and right-hand sides the
same, you’d have a cylinder in 3 dimensions.

But if the rectangle was sufficiently long in
relation to its width you could give it a half twist before
joining the edges and you’d have a totally different
surface called the Mdbius Band. So perhaps we should
add some arrows to our picture.

. Mobius
At Cylinder A At Band YA

|

177



Now what do you think that this shape might be?

A 4 - t A

If you have played lots of computer games you
might recognise this as a screen with ‘wraparound’. If
you move off to the right you’re spontaneously
transported to the corresponding position on the left
edge and if you go off the top you come back to the
bottom.

A microbe used to crawling around a sheet of
postage stamps might think that this is where it was
because if it goes off at the right hand edge it may
conclude, not that it has been transported to the left, but
rather it’s at the left-hand edge of another postage
stamp identical to the one it has just left.

But can we wrap it up into a recognisable shape
in 3 dimensions? First we can join up the two edges
marked B into a cylinder.

O )
Now here is where we must go a little
topological. If we stretch the cylinder so that it

178




becomes a long hose the ends of this hose will be
circles, each marked with the letter A. If we bring these
ends together we’ll find that the arrows will be going
the same way so that we can join the edges to make ...
a hose with the ends joined!

But what shape is that? Well if we lay the hose
flat on the ground into a nice circle we discover that
what we have is a rather distended doughnut. Actually
in some countries doughnuts are not doughnut shaped
so perhaps we’d better give the shape its correct
mathematical name — the ‘torus’.

The two pictures we have so far of the Projective
Plane are quite unsatisfactory. The first was not a true
picture and in the second we had to call lines points and
planes lines. Isn’t there an honest-to-goodness picture
where points are points and lines are lines?

Suppose we take our porcupine
model of the Projective plane where
the projective points are really lines
through a single point.
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Now enclose this model in a sphere whose centre
is that point. Each of our lines will cut the sphere in
exactly two points.

So now our projective points consist of pairs of
antipodal points, that is, diametrically opposite points.
Each such pair of points has to be considered as a single
projective point. Not perfect, but at least a step up from
having to consider a whole line as a single point.

But we can cut this sphere in two. With each pair
of points one will be in the ‘northern’ hemisphere and
the other in the ‘southern’ — with the exception of the
points actually on the equator. These will still be pairs
of points representing single ones.

We can flatten the hemisphere so that it becomes
a circle. Interior points represent projective points but
on the perimeter we have to have pairs of opposite
points representing single projective points.
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Finally we can bend this surface so that it
becomes a rectangle. To represent the fact that pairs of
opposite points are to be considered as single projective

ones we can place arrows and labels.
B

n
|

4 Projective
plane Y

<
«

So here we have B2-dimensional picture of the
Projective Plane. Can you imagine it now? | doubt it.
This business of having to consider pairs of points is
still there and while mathematically it’s quite sound it’s
not the sort of picture we might have hoped for. We
could join up the A’s but that would make a Moébius
Band and there would be no way of joining up the B’s
— not in 3-dimensional space at least.

We’re in a similar position to the disembodied
angel who’s highly intelligent but has no concept of
space. We want to imagine the unimaginable, but we
can’t. Still, we can do lots of things with the Projective
Plane. We can even prove theorems about it.
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But who’s interested in proving theorems about
something that’s totally imaginary? It sounds like
someone writing a book about the biology of a
mermaid! The amazing thing in mathematics is that
there are problems about our real world that can only
be solved by going outside it. There are facts about
ordinary real numbers that can only be proved by
temporarily going out among complex numbers. There
are facts about the Euclidean plane that are best proved
by temporarily considering the Projective Plane. There
are problems about our familiar 3 dimensional world
that we couldn’t solve if we remained within 3-
dimensions.

So the Projective Plane is a valuable
mathematical space. But can we accurately imagine
what the Projective Plane looks like? Not on this side
of heaven! The Projective Plane is one of the many
unimaginables in mathematics.
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PUZZLE: GAS, WATER
AND ELECTRICTY

Remember the Utilities Puzzle in chapter 1. We
proved there that it’s impossible. Your challenge here
Is to solve it with modified rules. Take a strip of clear
plastic — the sort you can write on. If you don’t have
such a strip handy, don’t worry. You should be able to
solve this puzzle in your head,

Somewhere on this strip mark three points with
small black circles. These represent the three utilities,
a gasworks, a power station and a water reservoir. Now
mark three more points with small squares. These
represent three houses. These six buildings are
supposed to be embedded inside the strip. You can
repeat the marks on the other side if you wish but since
you can see them from both sides it doesn’t matter. The
six buildings can be located anywhere you like. Just
don’t put them too close together or you’ll have trouble
drawing the lines between them.

Now each house has to receive gas, water and
electricity by means of pipes and wires so your task is
to draw lines from each of the round dots to each of the
square ones. But here’s the catch. Because this is
essentially a 2-dimensional puzzle you must ensure that
pipes and wires don’t cross each other. Remember that,
like the buildings themselves, the pipes and wires are
supposed to be embedded inside the strip so it’s no
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good having a pipe on one side crossing over a wire on
the other.

You’ll find that the puzzle is no more possible
than it was on a sheet of paper unless you take
advantage of one extra thing you are allowed to do.
You are allowed to bend the strip and join the two
shorter edges together. Pipes or wires are permitted to
cross this junction, but of course, not each other.

You’ll find the answer at the back of the book.
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6. THE UNSOLVABLE

86.1. Are Computers Omnipotent?

Is there anything a computer can’t do? Certainly
we’ve witnessed some amazing developments during
the eighty or so years computers have been around. Of
course we can think of some things that computers
can’t do — yet. But sooner or later ...

Of course computers can’t solve any problem
that has no solution. They can t come up with a proof
that 1 + 1 =3, 0ra |
procedure which can
trisect any angle
exactly by ruler and Fpmm
compass. But surely
if a solution t0 a Mg
problem exists a HE=
computer program
can be writtento find === ‘
it. perhaps not today, or tomorrow, but at some time in
the future.

In fact our popular belief in the intellectual
omniscience of the computer is misplaced. There are
problems which have solutions but which no computer
has ever solved, will never solve and can never solve.

But wait! Aren't we limiting the ingenuity of
man? People once said that man will never fly in
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heavier-than air machines, that we will never be able to
reach the moon, that smallpox will never be eradicated.
How short-sighted is the person who declares that so
and so will never happen. Yet that’s what I’m saying.
Problems exist, problems which have a solution, which
man can never solve. And not just human man. No
being whose thought processes are based on the same
logic as ours can possibly solve these unsolvable
problems.

86.2. The Halting Problem

There’s a dream that every novice programmer
has. When a computer program is ‘compiled’ (this just
means translating it into a form that the computer more
readily understands) the compiler program generates
error messages to say that you appear to have left out a
comma here or you’ve misspelt the name of a variable
there.

But despite this, usually the first time a novice
writes his or her first really complex program the
computer ‘freezes’. Stupid machine — the keyboard
doesn’t work, the screen goes on strike. The program
has to be aborted by using some emergency key-stroke
combination or switching off the power. Even
experienced programmers, like the ones who wrote the
operating system of your computer, can’t avoid having
bugs that emerge from time to time — hopefully not too
frequently.
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When our own program ‘crashes’ our first
thought may be to blame the operating system, or the
hardware. Perhaps my computer has a virus. But soon
the novice discovers that it wasn’t the computer that
was at fault, but their program. There was an unforseen
infinite loop in the program.

A very obvious case of such an infinite loop is:
10: GO TO 10

which in line 10 sends the machine back to the same
instruction all the time.

An equally obvious case of a program failing to
halt is:
10: N=2
20 LETN=N+1
30: IFN<2THEN GO TO 10

You might argue that we haven’t got into the sort of
loop whereby the computer returns to a previous state.
The value of N never repeats. Nevertheless we include
such infinite paths as an infinite ‘loop’.

You’d have to be pretty stupid to write such
programs, but the problem is that infinite loops can be
very subtle and hard to find. Take the following
program.
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1: LETT=0
2:LETN=0
3:ADD1TON
1
4: ADD NE TOT
5S:IFT<2GOBACK TO STEP 3
6: OTHERWISE PRINT THE VALUE
OF N AND HALT

We start with T =0and N =0. Then we add 1 to
N, giving N = 1, and add # to T, giving T = 1. Since
T is less than 2 we go back to step 3. Then we add 1 to
N, so that now N =2 and add % to T, giving T = 1.25.

Again T is less than 2 and so we go back to step 3.

After 10 steps we will have:

fog.l i 11111 11
a 4 9 16 25 36 49 64 81 100

which is about 1.55.

Although T is increasing, it will never be bigger
than 2. In fact it’s possible to show that T will never be
bigger than 1.645. So the program will continue
running forever. It will never halt. The Swiss
mathematician, Euler, proved that the sum to infinity
of this series is ©?/6 which is 1.644934067 ...

Now consider the following similar program.
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1:LETT=0

2:LETN=1

3: ADD% TOT

4:ADD1TON

5:IF T<10GO BACK TO STEP 3

6: OTHERWISE PRINT THE VALUE
OF N AND HALT

As with the previous program we are adding
smaller and smaller numbers to the total. It will still be
running after 10000 steps and it would be easy to think
that it will go on forever. However, this time the
program will eventually halt. When N = 12367, the
value of T will become 10.00004301.

Merely deciding that if a program hasn’t halted
after a certain number of steps is no guarantee that it
will never halt. If we changed the ‘10’ in the above
program to 1000 the program would, in principle, still
halt. But if you ran this program on the fastest computer
in the world it would still be running after a year. You
might decide that surely it’s going to run forever, but
in principle it would halt. The only problem is that the
universe, and all computers within
it, would have decayed long before
the program halted.

Now  wouldn’t it be
wonderful if some piece of software
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could examine a program, and the data that | plan to
use as input, to see if it will get into any infinite loops
before | actually run it. Such a program would examine
the logical structure of my program and very cleverly
predict whether or not my program would get itself in
an infinite loop.

Such are the very simple specifications for a
halting predictor program. “I can see how it could
easily detect obvious
bugs like 10: GO TO
10 but I’'m not sure
how it would detect the
more subtle loops. But
still I’'m sure it could
be done by some very
clever programmer.”

Alan designed the perfect computer

Not so! This dream will be forever a dream. Very
clever programmers may be able to design something
that picks up the more obvious loops. But no
programmer will ever be able to write something that
can pick up all of them. The reason is that doing so is a
logical contradiction.

86.3. Programs

A computer program is simply a list of
instructions which the computer follows to solve a
problem. Humans are often given instructions and
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there’s nothing fundamentally different between a
computer and the human brain in this sense.

Recipes are simply programs for cooking.
Knitting instructions use a set of symbolic
abbreviations which one has to learn. In principle a
human being armed with unlimited supplies of paper
and pencils can do anything that a computer can do. It’s
just that the computer does it very much more quickly
and accurately.

We can prove that the halting problem is
unsolvable using any suitable programming language.
One can even use the English language, provided we
make our meaning sufficiently precise. This means you
can follow this argument without knowing much about
computers. Basically, all you need to know is that there
are three ingredients in the computing process — input,
the program and output.

INPUT mep | PROGRAM |mp OUTPUT

We’ll use a shorthand to represent a diagram
such as the above. We’ll write:

INPUT[PROGRAM] = OUTPUT.
So if TOASTER is a program (list of
instructions) for using a domestic toaster, we will
write BREAD[TOASTER] = TOAST to indicate
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that if the toaster instructions are
applied to the input BREAD, the
output is TOAST.

If DOUBLE is the program
which describes how to double a
number then 3[DOUBLE] = 6.

Often the output of one program becomes the
input of another.

% (EB)( 7)==

So if PROG A and PROG B are two programs
we’ll write the program that consists of doing PROG
A and then PROG B as PROG A + PROG B.

INPUT = PROGA| = | PROGB| = OUTPUT

We’ll use a shorthand to represent a diagram
such as the above. We’ll write:
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INPUT[PROG A + PROG B]
= INPUT[PROG A][PROG B]
= OUTPUT.

In the above example we could write the
process as:

DOUGH[BAKE + CUT]
= DOUGH [BAKE] [CUT]
= BREAD [CUT]
= SLICED LOAF

But beware. PROG A + PROG B is not usually
the same as PROG B + PROG A. The order in which
you do things usually matters. Try following the steps
in a recipe in random order!

If PROG A is the
operation of putting on your
socks and PROG B is the
operation of putting on your
shoes then PROG A + PROG B is the normal way of
getting dressed, but PROG B + PROG A, where you
put the shoes on first and then the socks will be quite
different.

Often in mathematics the order of operations is
not important. You can add numbers in any order or
multiply them in any order. Adding 3 and then adding
2 is the same as adding 2 and then adding 3. But this is
the exception. Most operations in mathematics are
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sensitive to the order in which we carry them out. For
example:

7 [DOUBLE] [ADD 1] = 14 [ADD 1] = 15
while

7 [ADD 1] [DOUBLE] = 8 [DOUBLE] = 16.

86.4. Some Sample Programs

The input to a program could be a physical
object, such as a slice of bread, or a number. But
programs that can be processed by a computer can’t
handle input in the form of a slice of bread. When they
were first built it was thought that computers could
only accept numbers as their input, but this was wrong.

Fundamentally the input to any computer can
only be a string of symbols, essentially strings of 0’s
and 1’s. Such strings can represent numbers. But
increasingly, as computers developed we began to
realise that such strings can represent words, or
pictures, or sounds.

In the examples that follow the input and output
are strings of symbols. Fundamentally that’s all
computers can process. The strings might represent
words, or numbers, or pictures but to the computer
they’re just meaningless strings to be manipulated
according to certain rules.
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We will assume that whenever our programs
write something as output they write it on the same line
as the input, coming immediately after it, and so the
output includes the inpu, though often the program will
explicitly instruct you to erase the input. And when the
program runs out of things to do, it halts.

Although, for a real computer, the strings are
strings of 0’s and 1’s, we’ll use strings of letters of the
alphabet. This will make it more interesting, and easier
to understand, Our first program is called REVERSE.
Very simply, it reverses the order of the letters in a
string. The instructions that make up this program are
as follows:

REVERSE
1. Write input
backwards.

2. Erase input.

So MESSAGE[REVERSE] = EGASSEM.

A palindrome is a string which reads the same
forward as backwards, like PUP so palindrome;s are
those strings that REVERSE doesn’t alter.

One of the most famous palindromes of all is
what Napoleon is supposed to have said:
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ABLE WAS | ERE | SAW ELBA. Another famous
palindrome, this time without the spaces, is
AMANAPLANACANALPANAMA.

Reversing a message twice of course brings the
message back to the way it was. Thus we can write:
MESSAGE[REVERSE][REVERSE] =
MESSAGE.

k*kkhkkhkhhkhhkkhkkhhkkhkhhkhkhhkkihkkihkkihkhhkhhhihkiikkikx

COUNT is a program which counts the number
of symbols in a string.

COUNT
1. Count the symbols in the
input.

2. Write this number in
words.

3. Erase input.

Carefully examine the following examples and
convince yourself that the output claimed is the correct
one.

MESSAGE[COUNT] = SEVEN because MESSAGE
has 7 letters.

MESSAGE[REVERSE][COUNT] =
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MESSAGE[REVERSE][COUNT] =
EGASSEM[COUNT] = SEVEN

MESSAGE[COUNT][REVERSE] =
SEVEN[REVERSE] = NEVES

MESSAGE[COUNT][COUNT][COUNT]
= SEVEN[COUNT][COUNT]
= FIVE[SSAGECOUNT]
= FOUR

The first COUNT counts the number of letters in
MESSAGE and the output is SEVEN. The second
COUNT counts the number of letters in SEVEN, which
is FIVE. The third COUNT counts the number of
letters in FIVE and the output is FOUR.

In fact, if you start with any string and repeatedly

apply the program COUNT, eventually you will reach
FOUR. Why?

*kkhkkhkkhhkhkhkkhkhhkkhhkhhkhkhhkkhhkkihkkihkhhkhihihkihkikx

The next program doesn’t erase the input. Instead it

makes a second copy of the input. Py
eal
REPEAT ReP
1. Write “+”.
2. Copy input.
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MESSAGE[REPEAT] = MESSAGE+MESSAGE

BOO [REPEAT] [REPEAT] =
BOO+BOO [REPEAT]
BOO+BOO+BOO+B0OO

MESSAGE[COUNT][REPEAT] =
SEVEN[REPEAT] = SEVEN+SEVEN

MESSAGE[REPEAT][COUNT]
= MESSAGE+MESSAGE[COUNT] = FIFTEEN.

k*kkhhkhkhhkhhkkhkkhhkkhkhkhhkhhkihkkihkkihkhhkhhhihkiikikx

The next program doesn’t do
much except halt. It does throw out ¢
an exclamation mark just to prove
it’s been run.

HALT
1. Write “!”.

HELP[HALT] = HELP!

k,kkhkkhkhkhkkhkkhkkihkhhkhhkhkkihkkihkikhkhikhkihkiiikx

Now for a program which
deliberately gets into an infinite loop.
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LOOP
1. Copy the last
letter of the
input.

2. Go to step 1.

AGH[LOOP] = AGHHHHHHHHHHHHHHH.......

There’s no real output because the program
never halts. This program will loop, no matter what the
input is.

FTrRIAIAIAIAIAAIAAIAIAAAAAAAAAAkAAAhhhAhhhkikikikikikx

The next program is more discriminating. In fact
it will loop, but only if it is told to halt.

DISOBEY
1. If input = LOOP then
HALT.

2. If input = HALT then
LOOP.

3. Otherwise do nothing.

Of course DISOBEY doesn’t really disobey its
instructions. It only appears to do so.

LOOP[DISOBEY] = LOOP!
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The machine actually halts after printing the
exclamation mark.

HALT[DISOBEY]=HALTTTTTTTTTTTTT........
This time it doesn’t halt. For any other input nothing
happens, except for halting.

STAY[DISOBEY] = STAY.

k*kkhkkhkhhkhhkkhkkhhkkhkhhkhkhhkkihkkihkkihkhhkhhhihkiikkikx

The last of our examples here combines HALT
and LOOP with COUNT.

MAYBE
1. If the number of symbols in the input is even then
HALT.

2. Otherwise LOOP.

NO[MAYBE] = NO!
YES[MAYBE] = YESSSSSSSSS............
ANYTHING[REPEAT][MAYBE]

= ANYTHING+ANYTHING[MAYBE]

= ANYTHING+ANYTHINGGGGGG....
This is because ANYTHING+ANYTHING has odd
length.
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NO[MAYBE][MAYBE]

= NO![MAYBE]

= NOtmmm
Since NO has even length, NO[MAYBE] = NO!
Since NO! has odd length, NO![MAYBE] =
NoOl

86.5. Cannibalism

For convenience let’s assemble all the programs
we’ve discussed.

REVERSE | COUNT REPEAT HALT
1. Write the | 1. Count the 1. Write +. | 1. Write !.
input symbols in the | 2. Copy
backwards. input. input.
2. Write this
2. Erase number in
input. words.
3. Erase input.

LOOP DISOBEY MAYBE

1. Copy the 1. If input = LOOP | 1. If COUNT)input
last letter of then HALT. is even then STOP.
the input. 2. Ifinput = HALT | 2. Otherwise LOOP.

2. Go to step 1. | then LOOP.
3. Otherwise just
halt.

Perhaps you may be thinking that it’s confusing
writing both programs and their input/output data with
capital letters. Wouldn’t it be better to use lower case
for data and capitals for programs? The reason is that
programs can be considered as data for other programs.
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A compiler for a programming language is a very
complicated program into which you feed a program to
convert it to a form which is convenient for the
computer. It’s not uncommon for compilers to be
written in the same language as the programs they’re
designed to compile. So you could feed a compiler into
a second copy of itself!

Normally when feeding a program to itself we’d
do this with the complete list of all the instructions —
not just the name of the program. But for simplicity in
this discussion let’s just work with the names. Let’s
take each of our seven programs in turn and work out
what would happen if their name was used as their own
input.

REVERSE[REVERSE] = ESREVER
COUNT[COUNT] = FIVE
REPEAT[REPEAT] = REPEAT+REPEAT
HALT[HALT] = HALT!

LOOP[LOOP] = LOOPPPPPPPPPP.............
DISOBEY|[DISOBEY] = DISOBEY

MAYBE[MAYBE] = MAYBEEEEEEE..........
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86.6. Predicting Loopiness

We now come to a program which doesn’t exist,
even though the following description suggests that it
might.

PREDICT
1. If the input has the form data+program and
the program would halt given that data as
input, then erase the input, write HALT and
halt.

2. If the input has the form data+program and
the program would never halt given that data
as input, then erase the input, write LOOP
and halt.

3. If the input doesn’t have the form
data+program then erase everything and
write ?.

Although we’ve listed what
we’d like the program to do we
4s haven’t said how it should
decide whether the program
would halt given that data as
input. Of course the fact that we
can’t think how to do it doesn’t of itself make
PREDICT an . impossibility. That is something we’ve
yet to prove. But just suppose for the moment that such
a PREDICT existed.
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MESSAGE+COUNT[PREDICT] = HALT
because MESSAGE[COUNT] = SEVEN, and so
stops.

LOOP[PREDICT] =7
because the input doesn’t have the required form with
a “+” separating two parts.

MESSAGE+LOOP[PREDICT] = LOOP
because MESSAGE[LOOP] = MESSAGEEEEEE....,
going into an infinite loop.

YES+MAYBE[PREDICT] = LOOP
because YES[MAYBE] = YESSSSSSSS........ , Which
doesn’t stop.

NO+MAYBE[PREDICT] = HALT
because NO[MAYBE] = NO! which stops.

YES+NO[PREDICT] =?
because although YES+NO has a + separating YES and
NO, the program NO hasn’t been defined.

Notice that in all these cases our human brain
was ingenious enough to work out what would happen
— halt or loop. How did we do it? Did we have a
systematic procedure? If so, we’re well on the way to
bringing PREDICT into existence. But no, we
predicted the behaviour of our programs on an ad hoc
basis. As we shall see this is the best we can ever hope
for.
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Now the specifications for PREDICT include the
requirement that it always give an answer. So
PROGRAM+DATA[PREDICT] will always be either
HALT or LOOP.

86.7. Cannibal Programs

We’ll call a
program a cannibal if it
halts when fed a copy of
itself as input. Let’s see
how many cannibals
we’ve bred.

REVERSE[REVERSE] *
= ESREVER
This halts, so REVERSE is a cannibal.

COUNT[COUNT] = FIVE
This halts. It, too, is a cannibal.

REPEAT[REPEAT] = REPEAT+REPEAT
HALT[HALT] = HALT!

Both REPEAT and HALT are cannibals.
DISOBEY[DISOBEY] = DISOBEY

Although DISOBEY will sometimes loop forever (if

the input is HALT), when fed its own description it
halts and so it too is a cannibal.
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LOOP[LOOP] = LOOPPPPPPP .............
MAYBE[MAYBE| = MAYBEEEEE .........

These are not cannibals because they loop when fed
their own description.

§6.8. The Final Showdown

We’re now going to build our final program. I
call it MEPH, short for MEPHISTOPHELES. In the
description that follows THIS represents any possible
input and THAT represents any valid program.

Now to do this we’ll need to assume that a
program called PREDICT, as described above, does
exist. If'it’s fed some data of the form THIS+THAT it
assumes that THIS is data and THAT is a program. It
then works in some clever way whether the program
that we are calling THAT would halt, if given THIS as
input, and prints out HALT or LOOP accordingly.

If the input doesn’t have the right format, or if
THAT is not in our list of programs, then it halts with
? as output.

Now of course it can’t do this by running the
program THAT, starting with input THIS, because if
THAT would never halt if given this input then the
PREDICT program would never reach a final answer.
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In a world where some clocks could go forever
you could never predict that a given clock will never
stop just by waiting for it to stop.

If some humans were immortal, and others
weren’t, you couldn’t decide who was which by
reading the death notices in the newspaper. The fact
that a name doesn’t appear for over a thousand years
(of course we’re assuming that all deaths are reported
in the death notices) might mean that the person is
really an immortal or simply that he’s a very long living
mortal. Computer programs are the same.

If PREDICT is going to exist it will have to be
exceedingly cunning and examine the structure of the
program whose behaviour it is trying to predict. And is
it impossible that a clever programmer might one day
be able to do it? Frankly, yes, it is impossible. We will
prove that it is impossible.

MEPH is built up from the
programs that we’ve constructed,
which certainly do exist, together
with the one we have merely
described, PREDICT. If things
go wrong, as they will, it will
mean that PREDICT doesn’t
really exist.
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MEPH
1. REPEAT.

2. PREDICT.

3. DISOBEY
Let’s check out MEPH with certain inputs.

THIS [MEPH]
= THIS [REPEAT] [PREDICT] [DISOBEY]
= THIS+THIS [PREDICT] [DISOBEY]

= ? [DISOBEY]
=2

Here THIS is not representing arbitrary input,
but the specific four letter word. Since we have not
defined a program called THIS, PREDICT simply
prints ? and halts. So unless the input to MEPH is a
valid program the output will simply be ?

DOUBLE [MEPH]

= DOUBLE [REPEAT] [PREDICT] [DISOBEY]
= DOUBLE+DOUBLE [PREDICT] [DISOBEY]
= HALT [DISOBEY]

= HALT [LOOP]

= HALTTTTTT .....

LOOP [MEPH]
= LOOP [REPEAT] [PREDICT] [DISOBEY]
= LOOP+LOOP [PREDICT] [DISOBEY]
= LOOP [DISOBEY]
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= LOOP [HALT]
= LOOP!

Since LOOP [LOOP] = LOOPPPPPPP ...............
PREDICT will detect this and merely print out LOOP.
Then DISOBEY will run the HALT program.

The big gquestion we are now going to ask is this:
IS MEPH A CANNIBAL?

Of course the answer has to be either “yes” or
“no”. Let’s examine each possibility in turn. The logic
of the argument requires a little tenacity to follow. Just
hang in there and follow it slowly, step by step.

CASE 1: Suppose MEPH is a cannibal.
What does that mean? It means that MEPH will halt if
it feeds upon itself, that is:

Now MEPH[MEPH]

= MEPH[REPEAT+PREDICT+DISOBEY]
= MEPH+MEPH[PREDICT][DISOBEY]

= HALT[DISOBEY]

= HALTTTTTTTT ...nn......

MEPHISTOPHELES+MEPHISTOPHELES[PRE

DICT] [DISOBEY]
= HALT [DISOBEY]
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But this says that MEPH doesn 't halt when fed its own
description, contradicting our assumption for this case.

CASE 2: Suppose MEPH is not a cannibal, that is
MEPH+MEPH[PREDICT] = LOOP.

Now MEPH [MEPH]

= MEPH [REPEAT][PREDICT][DISOBEY]
= MEPH+MEPH [PREDICT] [DISOBEY]
= LOOP [DISOBEY]
= HALT

But this says that MEPH does halt when fed its own
description. Again this contradicts our assumption.

Only two possibilities and neither of them true.
Each alternative leads to a contradiction. We’re in a
maze and there’s no way out except the door by which
we came in. Everything we did was conditional on our
assumption that a program satisfying the specifications
of PREDICT can exist. Therefore it cannot! The
halting problem is unsolvable!
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INTERLUDE: PLAY
“It’s Got To Stop Sometime”

Scene: A classroom with a long, wide blackboard at
the front. The professor is standing at the front, asking
for volunteers.

Prof: Come on now, | need five volunteers to be
“people programs”. All you need to do is to hold up
one of these cards and, when | say, you just perform the
instructions on the card to whatever is written on the
board.

Noel: I’ll have a go but I’'m not very good at this sort
of thing. I’m sure I'll get it all back-to-front.

Prof: That’s exactly what I want you to do. Your
program is called REVERSE.

He hands Noel a card on which is written the words:

REVERSE
Reverse what’s on the board.

Now whenever | call on you, all you have to do is to
rewrite whatever is on the board backwards.

Peter: Ifit’s as easy as that then I’'m your man and as
my mum always says if you want someone to do a job
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properly and not give up half-way through then ask me
because I’'m your man and as my mum always says ...

Prof: I’m sure you are, Peter. Your program is called
REPEAT.

He hands him a second card bearing the instruction:

REPEAT
While what is written on the
board ends in “T” put
another “T” at the end of it.

The Bubble Twins: (in chorus) We’d like to help too,
but only if we can do it together.

Prof: Oh, then you'll like your job.

He gives June Bubble a card on which is written:

DOUBLE
Make a second copy of
what’s on the board,
separated by a space

When | call on you, all you have to do is to make a
second copy of whatever appears on the blackboard.
Jane: (to her sister) Ooh, I’ll do the copying because
I’ve got the steadier hand. You can hold up the
instructions in case | forget them.
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Prof: Right, let’s practise those three programs.

Mary: What about me? | knew you'd forget me. It
just not fair!

S

Prof: You'll get your chance, Miss Contrary, I’ve got
just the job for you. But we’ll just practice these first
three. Now when | call out the name of your program
you have to perform the instructions on your card to
whatever is on the blackboard. If | say REVERSE
that's your cue, Leon.

Noel: Do you mean me?
Prof: Sorry, Noel, yes it's you | mean. And if | say
REPEAT its over to you Peter. And your cue girls is
DOUBLE.

He writes the letters RAH on the board.
OK it's DOUBLE first.

The Bubble sisters write a second RAH next to the first
to get RAH RAH.

Now REVERSE.

Noel rubs out the message RAH RAH and replaces it
with HAR HAR.

And DOUBLE again.
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The message now becomes HAR HAR HAR HAR.
And finally REPEAT.

Peter was about to start tacking a row of R's on the end
of the data but the Prof caught him just in time.

No Pete. Your instructions are to add T's and only when
what is already there ends in T. When it ends in
anything else you do nothing.

Peter, somewhat disappointed, sits down again.

Now we’ll try another one.

He cleans the board and writes the word EXIT.
REVERSE.

Noel changes EXIT into TIXE.

Peter: Isn’t ENTRANCE the reverse of EXIT?

Prof: No Pete, Noel’s right. I said REVERSE, not
OPPOSITE. OK, now DOUBLE.

Jane Bubble adds a second TIXE.

REVERSE

Noel replaces the TIXE TIXE with EXIT EXIT.
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And now REPEAT.

Peter excitedly writes T after T, getting EXIT
EXITTTTTTTTTITTTTTT...... until he runs out of
blackboard. The Prof has to restrain him from
continuing across the wall.

Mary: That’s stupid! Whenever Pete takes off nobody
else can follow him.

Prof: No, Mary, its not stupid. It’s just what happens
when a computer program crashes because it gets into
a loop.

Mary: Well it’s stupid ever to get into a loop. The
computer should be clever enough to know that it’s
being told to get into a never-ending loop and spit out
the offending program.

Prof: But Mary, it’s not always so easy to ensure that
a program will go on forever.

Mary: ‘Course it is! Any fool could see what was
going to happen when Pete took over. A clever
computer would be able to examine any programs it
had to run and refuse any which would make it crash.

Prof: But that would need another program to work out
what would happen.
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Mary: So what! It might be a complicated program but
I'm sure someone smart like Tim could come up with
one. You just get Tim's program to look at the one
you're going to run and if it’s OK it rings a bell and if
it would loop forever it rings a buzzer. Then you'd
know not to let the computer run any program that sets
off the buzzer.

Prof: But this program would have to be able to work
on every possible program.

Mary: Sure, and what’s wrong with that?

Prof: Well, it would even have to be able to work on
itself.

Mary: Well any dum dum can see that Tim's program
would always halt so if you ran it on itself you'd get the
bell, of course. Now when are you going to give me
my program, or had you forgotten?

Prof: OK Mary Contrary, I’ve got just the program for
you. It’s called DISOBEY.

He gives her a card with the following instructions:
DISOBEY
If what’s written on the board
is HALT then REPEAT.

If it is LOOP then
REVERSE.
Otherwise print “?”

216




Mary: But that’s silly. If I'm told to HALT I go on
forever writing HALTTTTTTT.......

and if, for example, I’'m told LOOP, I write POOL and
then halt. I’ll always be doing the opposite to what I’'m
told.

Prof:  That's why it’s called DISOBEY, Miss
Contrary! Let’s try it out.

He writes POTS on the board.
Now REVERSE.

Noel changes it to STOP.

And now DISOBEY.

Mary: Well the data isn’t HALT so I do the
“otherwise” bit. That means getting POTS again.

She picks up the duster but the professor gently
restrains her.

What’s the matter, I’ve got to do a REVERSE, don't I?

Prof: Not you, your job is to activate Leon as a
subroutine. He does the actual reversing.

Mary: Oh, all right then. Go on Noel. (I suppose that’s
who you meant.)
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Noel reverses LOOP and once again the word POOL
IS written on the board.

Prof: Now again.

He cleans the board and writes HALT.

OK Mary DISOBEY.

Mary gives Peter a hard thump and Peter starts writing
dozens of T ’s until the Professor gives Peter a nudge to

break him out of his infinite loop.

Now has it ever occurred to you that a program can be
made to operate on itself?

Tim: Well | suppose I could write a program called
COUNT which counts the number of words in a piece
of text and | could run it on a copy of the COUNT
program itself.

Prof: Exactly. So June, if DOUBLE acted upon itself,
what would happen?

June: DOUBLE DOUBLE toil and trouble — well just
DOUBLE DOUBLE I suppose.

Prof: And, Leon, what if you REVERSE REVERSE?

Noel: You’d get ESREVER.
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Prof: Pete, would you mind doing REPEAT on
REPEAT.

Peter: What do you mean?

Prof: | mean write REPEAT on the board as your data
and carry out the REPEAT program on it.

Peter writes REPEAT on the board and then, after
scratching his head for a minute, he turns it into
REPEATTTTTTTTTTTTTTTITTT......

Prof: So if DOUBLE acts upon itself it will halt. The
same is true of REVERSE. But if REPEAT acts on its
own description as data it will never halt.

Jane: It’s just like it gets indigestion. It can’t digest a
copy of itself.

Mary: Sounds like a cannibal. What a positively
disgusting idea!

Prof: That’s a good analogy. How about if we call a
program a ‘““cannibal” if it halts when it feeds on itself.
So DOUBLE and REVERSE are cannibals. But
REPEAT isn’t. As Jane says, it gets indigestion if it
tries to eat a copy of itself. What about DISOBEY
Mary?

Mary: DISOBEY isn’t HALT so once again I do the
“otherwise”. Go on Noel, REVERSE.
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And Noel proceeds to turn DISOBEY into YEBOSID.

Prof: So DISOBEY is a cannibal program.

Now Tim, the last program is yours. It’s called
PREDICT.

Tim: I knew you'd say something like that. You’re
going to tell me that my program predicts whether or
not any program will halt, or whether it will go into an
infinite loop.

Prof: Exactly, and because the answer will depend on
what data it’s given it needs to be given the program
plus the data.

He hands Tim the last card with the program:

PREDICT
If the program will halt when given the
data, print out HALT
but if the program will loop, print out
LOOP

Noel: That’s not very difficult. All Tim’s program has
to do is just run the given program and if it halts then it
prints out HALT and if it doesn’t halt ...

Prof: ... then you’d never be able to break into it to
print out the message LOOP.
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Peter: Well can’t you just break it out of its loop if it
seems to be going on too long?

Prof: How long is too long? A program might take a
very long time and still halt. Even if you waited a
hundred years you wouldn’t know for certain that it’s
not going to halt some time in the future.

Noel: Well how’s Tim going to do it?
Prof: He can’t. It’s impossible.

Mary: That’s rubbish. Tim’s a computer whiz. And
even if Tim can’t, someone will one day. It makes me
mad when people say that something is impossible just
because they're not clever enough to do it themselves!
Someone clever can examine the program and work out
whether it will halt, without actually running it.

Prof: Well, we’re supposing for the sake of argument
that Tim has done it and PREDICT is that program.
Let’s try it out.

He writes the word TEST followed by the word
DOUBLE.

Prof: OK Tim, PREDICT.

Tim: Well it’s obvious that if you ran the program
DOUBLE on the TEST data you're just going to get
TEST TEST.

221



Prof: So, carry out your program.

Tim: If I ran DOUBLE on TEST the program would
halt so I write the word HALT.

He erases TEST DOUBLE and replaces it by HALT.
The Prof now writes REPEAT to the right of HALT to
get HALT REPEAT.

Right Tim, here’s another example, go ahead and
PREDICT.

Tim: Clearly I predict that REPEAT will loop in this
case.

He writes the word LOOP in place of HALT REPEAT.

Prof: Well Tim, is PREDICT a cannibal? Will it halt if
it feeds upon its own description?

Tim: I guess so. It is supposed to print either HALT or
LOOP, but in either case it, itself, has to halt so that
you can read its answer.

Prof: Now if | was to attach DOUBLE to PREDICT

you’d get a program which tells you whether or not any
given program is a cannibal. But | want to give it a
twist. Here is a program I’ve called MONSTER.
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The professor holds up the last card displaying the four
words:

MONSTER
DOUBLE
PREDICT
DISOBEY

Prof: Do you think MONSTER is a cannibal?

Peter: Well it sounds like a pretty uncivilised, pagan
program so | guess it is.

Prof: Guessing isn’t good enough. We must have
certainty.

Jane: Well, one thing’s for certain, either it is a
cannibal or it isn’t.

Mary: Stupid girl. Where do you think that inane
remark will get us?

Prof: Further than you might think. Let’s follow up
each possibility in turn. Suppose Pete is right and it is
a cannibal. Let’s feed MONSTER its own description
to digest. What happens first?

June: Well first we do DOUBLE and get MONSTER
MONSTER.
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Tim: Then PREDICT examines the structure of
MONSTER and decides whether it will halt when it
feeds on MONSTER.

Noel: And because we’re at the moment assuming that
it’s a cannibal it will be able to digest its own
description, so PREDICT will spit out HALT.

Mary: Then | come along and upset the applecart,
because as soon as | see the word HALT, my
instructions in DISOBEY tell me to turn this into
HALTTTTTTTTTTTTTT...

Prof: Not quite. You have to ask Peter to run the
program REPEAT. But it amounts to the same thing.

Peter: But that will give MONSTER indigestion. It’11
never get to the end.

Mary: So MONSTER is not a cannibal after all. That’s
dumb. We assumed it was.

Prof: So all that means is that that assumption has to
be rejected.

Tim: Oh, | see, that contradiction proves that
MONSTER is not a cannibal.

Prof: Well, as that seems to be the only possibility
remaining, let us assume that MONSTER is not a
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cannibal, that is, it will go on for ever if it feeds on a
copy of itself.

Mary: We don’t need to assume that, we know that.

Prof: So lets follow through MONSTER again as it
attempts to digest MONSTER. First step gets us
MONSTER MONSTER.

Tim: Then my PREDICT program interprets this as the
program MONSTER acting on the data MONSTER
and PREDICT must predict whether it will halt.

Noel: And since we know that MONSTER is not a
cannibal, the answer LOOP will come out of the
PREDICT part of MONSTER.

Mary: And then | come along and DISOBEY, which
means that since | don’t see the word HALT I simply
turn the LOOP into a POOL and halt. But that’s dumb
too because that means that MONSTER is a cannibal.

It fed upon itself and finished. Didn’t you say that
MONSTER couldn’t be a cannibal?

Prof: Well we do appear to be in a bit of a fix. If we
suppose that MONSTER is a cannibal we can prove he

isn’t and if he i1sn’t we can prove he is.

Mary: That’s the dumbest thing I ever heard. If he is,
he isn’t and if he isn’t he is!
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Prof: So we’ve reached a blank wall again. But
remember, we’re still making an assumption.

Noel: What's that?

Prof: Well Tim hasn’t actually got a PREDICT
program.

Peter: So ... ?

Prof: If ever he, or anyone else for that matter, ever
came up with a PREDICT program that can decide in
advance whether or not any given program will halt,
the contradiction we reached a moment ago must
inevitably follow. So no such program could ever be
written. The Halting Problem is insoluble!

Mary: My “Halting Problem” is the fact that this stupid
lesson seems to be going on forever. Tim, do you
predict it will ever HALT?

At that moment the end-of-lesson bell was heard.

Tim: Indeed | do.
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7. THE
UNCOMPUTABLE

§7.1. Conceptual Models for the

Computing Process

If we want to investigate in detail what
computers can or cannot do, we need a precise
conceptual model for the computing process.
Computers, their operating systems and their
programming languages can be very complex But thls
complexity has to do with
practicality and efficiency, 3
not possibility. One can
use a very primitive
computing device and still,
given enough time and
patience, be able to do
anything that the most
advanced ‘state-of-the-art’ i,
computer can do. So, in &
setting up a model for
computability we should
set up an abstract machine which is as simple as
possible.

But what we must insist on, with our conceptual
model computer, is unlimited memory. Those who
drive powerful computers with terabytes of memory
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are still conscious of the limitations placed upon them
by how much computer memory they have. They’d
always like more. Having a fixed amount of storage
places artificial limitations on computability, even with
something as straightforward as multiplying two whole
numbers.

No computer in the world will ever be able to
multiply any two arbitrarily large numbers. The
process isn’t difficult, and computers can be
programmed to do this. But with limited memory, even
if that limit is huge, we may not even be able to store
the input, and even if we just managed to store the two
numbers we may not have any memory left over to
store the intermediate calculations. Yet we know, in
principle, how to multiply any two numbers no matter
how large they are. So we say that the multiplication
function is computable. The abstract computer that’s
usually used to explore computability is the Turing
Machine.

§7.2. Turing Machines

. So what is a Turing
3 Machine? Alan Turing was a
mathematician who worked in
Cambridge in the 1940’s. He was
fascinated by the concept of
computability. Remember this was
at a time just before the first actual
computers  were  built.  His
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conceptual model of a computing machine was based
on the English public service.

He imagined a large room filled with clerks.
These clerks would make marks on a paper tape or
erase marks with an eraser, according to certain
instructions. Being clerks in the English public service
they were not expected to show any initiative — they
had to simply follow orders.

The paper tape was infinitely long (so avoiding
any artificial limitations due to limited memory). And
the tape came in one hatch and out another. Input was
written on the tape, the tape was pulled through the
hatch and when the process terminated the tape would
be pushed out with the output written on it.

Dispensing with the
unnecessary imagery of a
room filled with public
servants, we can describe
a Turing Machine as
having an infinitely long
paper tape, ruled up INt0 .
squares. A small device runs up and down this tape,
capable of writing and reading marks on the tape. At
each moment of time this read/write head is scanning a
single square.

A Turing Machine

There’s only one symbol that can be written onto
the tape. It doesn't much matter what it is. We’ll
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represent this mark by the symbol 1. Those squares
which don’t contain a 1 are said to be blank.
Throughout the calculation the head writes 1’s or
erases them.

Now because of its invisibility, a blank is a
difficult symbol to represent. For convenience we’ll
use the symbol O to represent a blank. When the
machine begins, we assume that there are only finitely
many 1’s on the tape, representing the input data.
Sometimes we begin with the tape completely blank,
represented by a two-way infinite sequence of 0’s.

In addition to this infinite external memory a
Turing Machine has a finite amount of internal
memory. There’s a gear wheel that can rotate and it can
be in any one of a finite number of positions. We call
these various positions the ‘states’ of the machine. So,
if the machine has n states, they’re labelled 0, 1, 2, ...,
n-1.

At any given moment the machine is in one of its
states and the head is scanning one of the squares.
There’s a program, or set of instructions, which
regulates the behaviour of the machine. Depending on
the current state of the machine and the symbol being
scanned, the machine writes to the square, moves either
left or right one square, and the gear wheel rotates to a
new state (or perhaps it stays in the same state). Then
the process starts all over again.
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The instructions in a Turing program are written
in a table. The table has two columns, one labelled 0
and the other labelled 1. The symbol that the head is
currently scanning, either a 1 or a blank, that is a 0,
determines which column we take the next instruction
from.

The rows of the table are labelled 0, 1, 2, ... n—1
and represent the states. The current state of the
machine determines the row for the next instruction. So
if the machine is currently in state 3 and the head is
reading a 1, the next instruction comes from the row
labelled 3 and the column labelled 1.

Now what do these instructions look like?
There’s just one type of instruction, which is why it’s
so easy to learn the Turing Machine language. Suppose
that the machine is in state 3, reading a 1 and that the
instruction in the appropriate cell of the table is OL5.
This highly cryptic instruction says “print 0, move left
and go to state 5. The symbol on the current square is
erased (print 0), the read/write head moves one square
left and the gear wheel rotates to position 5. One step
in the calculation has just occurred.

Just two more comments are needed to complete
the description of the Turing Machine — how does it
start and how does it stop? The Turing machine always
begins in state 0. It stops whenever it’s told to go to a
non-existent state. For an n-state machine, with states
0,1, 2, ..., n=1, an instruction which tells the machine
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to go to state n has the effect of halting the machine,
indicating that the computation has been completed.
What appears on the tape at this stage represents the
output of the machine. So if a machine has 5 states,
numbered 0, 1, 2, 3, 4 the instruction 1R5 has the effect
of printing a 1, moving the head one square to the right,
and then halting.

This then is the Turing Machine. It’s a wonderful
tool in theoretical computing science, but it only exists
in the mind. Nobody has ever built such a machine.
Infinitely long paper tapes are hard to come by! But
since it would be highly impractical for practical
purposes this is no loss. The mind is the appropriate
place for it.

That's not to say that Turing Machines haven’t
been simulated on actual computers. It’s a very easy
exercise to program an actual computer to act like a
Turing Machine with a very long tape, which is the
nearest one can get in reality to the infinitely long tape.

You may wonder why we need an infinitely long
tape if, in the course of a finite number of steps between
starting and halting, only finitely many squares are
visited. The reason is not that we need infinitely many
squares. But we do need an arbitrarily large number.
We may not know in advance how many squares will
be visited so we have to have infinitely many to be on
the safe side. We want our uncomputability results to
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be absolute, and not simply because we've run off the
end of the tape.

Some descriptions of Turing Machines use finite
tapes which can be extended if the head is about to fall
off the end. But since the real purpose of these
machines is conceptual, not practical, we may as well
have infinitely many squares and be done with it. After
all, an infinitely long tape is no more difficult to
imagine than an infinitely long line in geometry or an
infinite collection of numbers in arithmetic.

§7.3. Turing Programs

We’re now ready for our first Turing Machine
program. This one has 3 states and doesn’t do anything
particularly useful.

0 1
Ol 1L2 | 1R1
1] 1L0 | OL3
2| OR2 | 1R1

Let’s run this program on our Turing Machine.
The best way to describe what happens, step by step, is
to draw a picture of the tape, or at least a portion of it —
as long as the portion includes all the 1’s on the tape.
So we can assume that everything to the left or the right
of the portion that’s shown, is blank. We then mark the
position of the head and the state of the gear wheel by
putting the number of the state underneath the square
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being scanned. Finally, as an extra aid to following
what is going on, we put the next instruction to be
performed at the right of the picture.

Suppose we start the machine with a blank tape.
Being in state 0, reading a 0, the first instruction is 1L1.

...... 0(0(0]0]|O0].... 1L2
0

Carrying out this instruction writes a 1, moves
the head one square left, and causes the machine to go
into state 2. A description of the machine at the end of
this machine cycle is:

...... 0/0|1]0][0].... OR2
2

After the next step we have:

...... 0(0|12/0(0].... 1R
2
And then:
...... 0O/0[1(0|0{..... 1LO
1
And then:
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0
And then:
...... 0O(0f1]11]0}{.... OL3
1
And finally:
...... 0/0|1]010{.... halt
3

The machine halts in state 3 with a single 1 on the tape.

Here’s another Turing Machine.

0 1
0] OL1 | 1RO
1] OR2 | 1L1

Suppose we start with the data 11111 on the tape,
with 0’s to the left and right of these five 1’s, and
suppose the head starts scanning the left-most 1. The
first instruction to be obeyed is 1R0. This leaves the
symbol 1 as it is, but moves right. The machine stays
in state 0. The second 1 is encountered, and the same
thing happens. We have a loop, with instruction 1RO
being performed over and over again, until the first O is
reached to the right of all the 1's.

235



At this stage the instruction OL1 is encountered.
Nothing is changed on the tape, but the head moves left
and the gear wheel changes to state 1. Now it is the turn
of 1L1 to be performed over and over, while the head
moves progressively left and the gear wheel stays in
state 1. The head returns, past all five 1’s until the 0 to
their left is reached. The instruction now changes to
OR3. This moves the head back to where it started, and
being sent to the non-existent state 3, the machine halts.
The net effect is to return to exactly the same situation
as existed at the beginning.

This machine hasn’t resulted in any useful
computation, but it has performed a little bit of mildly
amusing animation, simulating a train which starts at a
station, goes down the line till it reaches a blank,
returns, overshoots the station, backs up and finally
stops at the station.

The next machine behaves in a fundamentally
different way to any machine so far.

0 1
0] OL1 | 1RO
1] ORO | 1L1

A quick examination of the instructions will
show you that no matter what the initial data is, this
machine will never halt. There is simply no halting
instruction in the whole table.
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The fundamental problem in the Theory of
Computation is to find a way of deciding whether or
not a given Turing program will halt when we use
certain input data. Now we did solve the problem very
easily in this particular case (no halting instruction).
We don’t need to run the machine to see that it will
never halt. But the problem is to devise a method which
will work in all cases.

Certainly if, when you scan the instructions in a
Turing program you find nowhere for it to halt, then
you can say “it doesn’t halt!” But the problem is that
the converse doesn’t work. Here’s a program which
provides a halting instruction in the bottom right hand
corner. But, if we start it with a blank tape the blighter
just ignores it!

0 1
Ol OR1 | ORO
1] OR1 | 1L2

After one step, the machine finds itself in state 1,
reading 0’s, with the head moving continually to the
right, for ever and ever.

If we started the above program with input
consisting of a finite string of 1’s with the head
commencing on the one at the left, the behaviour of the
machine is easy to predict. It moves to the right, wiping
out each 1 as it goes until it reaches a 0. By now the

tape is completely blank and the machine then behaves
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as before, moving forever to the right. This time the
only one of the four instructions not to be reached is the
halting one.

§7.4. A Program For Locatinga 1

Have you ever run out of petrol on an isolated
road in the country and had the difficult job of deciding
whether you should walk back the way you came, or
walk on. You may remember how far it is back to the
last town but what if the next town is just around the
corner?

There’s an interesting problem like this with
Turing machines. Suppose you had the usual infinitely
long tape, and you were told that there is a single 1 on
the tape — all the other squares are blank. The machine
starts somewhere, but you don’t know whether the 1 is
to the left or the right. The problem is to design a
Turing Machine program that will locate this 1 and halt
on that square.

It would be no good going left until you hit the 1
because the 1 might be to the right and this strategy
would have you going left forever. Similarly it would
not do to just go right. The only strategy is to alternately
search to the left and to the right. Each time you move
to the left you’ll need to go further than you did last
time and similarly when you search to the right.
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So you might go one square to the right, then
back to where you started and go one square to the left.
Then back to where you started and go two squares to
the right. In this way you alternate between left and
right searches, and each time your search goes one
square further than last time. Sooner or later you will
reach the 1 and you then halt.

Such a strategy is fairly obvious, but the
primitive nature of the Turing Machine means that we
must employ a bit of ingenuity to implement that
strategy. All blank squares look the same. You would
need some mechanism of counting so that you knew
when you had reached the point you had reached
previously in that direction so that you could go just
one step further.

States can be used for counting in Turing
Machines in a limited way. Each time we move to the
right we could go to a new state. The problem is that
every Turing Machine, by definition, has a finite
number of states and the number of squares we might
need to move might exceed this. Remember the one
program has to work in all cases, no matter how far
away the 1 is from our starting position.

If you decided to adopt this alternating left/right
strategy on the long, straight, featureless road across
the Nullarbor Plains in Australia, you might hit on the
idea of marking the furthest point you have reached in
each direction with a chalk mark on the road. You
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wouldn’t need to mark the starting point, just the
furthest point in each direction.

So, you move east and west alternately. When
moving east you continue till you find the chalk mark,
erase it, walk a certain distance further and mark the
road. Then you walk west till you come to the chalk
mark, erase it, walk a certain distance further west and
then mark the road. This way you’ll eventually reach a
petrol station!

How do we adapt this to the Turing Machine
problem? A chalk mark would simply be a 1 that we
write on a blank square. But we have to be careful we
don’t confuse the 1’s we are writing with the 1 we’re
looking for. On the Nullarbor we’re not likely to
confuse a chalk mark with a petrol station, but on a
paper tape any 1 looks exactly like any other.

Here’s a solution to the problem. Note that the
beginning is a little different to the subsequent steps in
that we have to put down the two 1’s to begin with.
Note too that if we are just about to write a 1 on a square
that already has a 1 we know that we’ve found what we
were looking for. Oh, and being tidy programmers, we
go back and erase the 1’s we made and halt on the
located 1, leaving the rest of the tape completely blank.
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0 1

1R1 1L7 | Put down left marker for the first time

1.2 1L.8 | Put down right marker

oL2 OL3 | Move left - erase left marker

1R4 | 1R5 | Put down left marker in new position

OR4 | OR1 | Move right — erase right marker

OR5 | OL6 | Tidy up right marker

OL6 1L7 | Return to the found “1”

OR10 Halt on the “1”

OL8 | OR9 | Tidy up left marker

O©oo~NOoO ol WwWwpNPEF O

OR9 1L7 | Return to the found “1”

§7.5. The Longest Running Turing

Machines

The Turing Machine Olympics is a great
occasion. Turing Machines from all round the world
compete in many events. But as with any Olympics the
star event is the marathon. Actually the Turing
Marathon is an endurance race. Speed is a non-issue
because all Turing machines run at the same speed. The
gold medal goes to the one which runs longest when
started with a blank tape.

Now larger Turing machines have the potential
for running longer so there are marathon events for
each size of machine. So the winner in the 20 state
division will be the 20 state Turing machine that runs
longest when started with a blank tape.
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Imagine the excitement of this great event.
Countless Turing Machines are all lined up around a
huge stadium. Each of them is loaded with a blank tape.
The starting pistol fires and these machines spring into
action. Heads fly left and right across each infinite tape
as the machines operate furiously.

The machines all run at the same speed so that
after a while each machine has run 1000 steps. By now
many machines have halted and so are out of the race.
Attention focuses on those still running. After a time
there are only a few machines left, each showing no
sign of tiring. Finally there is just one competitor left,
and eventually he halts. Or perhaps there are several
who halt at the same time — they are declared joint
winners.

But what if a particular program runs forever?
It’s easy to write a Turing machine program that
doesn’t halt when started with a blank tape. Apart from
tying up the stadium and preventing the next event
from taking place, it isn’t fair. Programs which loop
have to be disqualified at the outset. Only those that
will eventually halt are allowed to compete. The
stewards have to examine the machines before the race
begins and disqualify those that will never halt.

So for each number of states the prize goes to the
Turing Machine with that number of states that for the
longest number of steps and eventually halts, when
started with a blank tape. Of course, since the number
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of states in a Turing program can be arbitrarily large,
there are infinitely many programs competing. But
there are only finitely many in each division because
there’s only a finite number of ways you can fill out
any specific table.

The fact that there are only finitely many
competitors in each race is important because if there
were infinitely many the race may still never finish,
even if each competitor does. Suppose there were
infinitely many competitors C1, C2, C3, ... and that C1
halted after one step, C2 after 2 steps and so on. Even
though each competitor eventually halts there would
never be a stage when they had all halted. But as there
are only finitely many Turing machines with a given
number of states this problem never arises.

§7.6. The Busy Beaver

When the problem
we’re about to discuss
> ‘ was first described it was
= called the Busy Beaver

Problem. Beavers are
industrious little animals,
found in North America,
who chop down small trees with their huge teeth and
use the timber to construct small dams. The apparent
tirelessness of the beavers has inspired such phrases as
“as busy as a beaver” and the thought of Turing

Y
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Machines “beavering away’ suggested the name “Busy
Beaver Problem”.

As we’ve seen, with our fanciful Turing
Marathon Race, for a given number of states, n, there
are only finitely many n-state machines. Of these some
will never halt when started with a blank tape and so
are disqualified. If the remaining ones are run, there
will eventually be a winner, or at least some joint
winners. There will be a certain number of steps at
which these winners finally stop.

Let's call this number B(n). It’s a function of n in
that you need to know the value of n before you can
work out B(n). It’s much like the function f(n) = n? +
n, except that we don’t have a neat formula for it.

The Busy Beaver Function

B(n) is the largest number of steps that an n-state
Turing Machine can run for, starting with a blank
tape, and still halt.

The Busy Beaver Problem
The Busy Beaver Problem is to write a program that
will calculate the Busy Beaver Function.

If there was a formula for B(n), even a
complicated one, it would be a simple matter to write
such a program. But programs can be written even
when there isn’t a formula. If there is any systematic

244



procedure for working out B(n) in all cases, one can
write such a program. In what computer language do
we want such a program to be written? It doesn't matter
because any such program, in any computer language,
can be converted to a Turing program.

In what format do we want our answer? Do we
want the B(n) to be written in normal notation, or in
binary or in some other form. Binary notation is the
system used for expressing numbers with just with 0’s
and 1’s and it’s the way numbers are actually stored
inside a real computer.

But again it doesn’t matter because it’s a routine
programming task to convert from one system of
notation to another. Binary might seem to be one that’s
very suitable for Turing Machines, but don’t panic if
you don’t know about binary notation. There’s a much
simpler system we can use.

§7.7. Unary Notation for Numbers
i There have been many systems of
", notation for the numbers 1, 2, 3, ...
The Babylonians had a system based
on counting in 60's. The Romans had
their Roman numerals. The Arabic
system we use is quite efficient.
Binary is particularly suitable for
computers. But the simplest system
of notation is unary.
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In unary we represent the number 7 by 1111111.
This is the system prisoners use to mark off the number
of days of their imprisonment. It’s a system which is
also used to score in various sports like cricket.
Sometimes the strokes are grouped into 5’s or 10’s to
make them easier to count, but the basic system just has
1’s. What’s attractive about it is the simplicity of
adding 1. None of this fuss about carrying 1 that you
get when you have to add 1 to 99. Just put down an
extra stroke.

Of course the unary system would be totally
impractical. Imagine the date 13-5-21 expressed in
unary:

11111111121121-11121-121211212112112121212117.
But we're not concerned with practicalities here, just
whether or not something is possible.

§7.8. Turing Programs with One or Two

States
We’ll calculate the value of B(1) to illustrate
what would be needed in a program for calculating the
Busy Beaver Function. If a Turing Program has just
one state, the initial state 0, the whole program can be
written in a table with one row and two columns:
0 1

0
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Each of the two cells in this table will contain an
instruction. In this case there are only eight possible
instructions: OLO, OL1, ORO, OR1, 1L0, 1L1, 1RO, 1R1.
With eight possibilities for each cell, there are 8 x 8 =
64 possible Turing Machines. In terms of our story of
the Turing Marathon, there will be 64 possible entrants
in the 1-state division. But some of these will be
disqualified.

Let’s focus our attention on the first instruction.
We can sort these 64 programs into eight groups of
eight according to their first instruction.

AO 1 BO 1 CcO0O 1 DO 1
ojoo|l | ofort] | oforo| | o forif| |

EO0O 1 FO 1 GO 1 HO 1
ojiwo| | ofis] | ofiro] | o [1r1] |

Each of these partially completed tables
represents eight programs corresponding to the eight
different possibilities for the second instruction.

Now let’s examine these eight tables in turn.
Starting with a blank tape the machines in groups A, C,
E, G will loop. The second instruction will never be
reached. Machines in group A, for example, move
continually to the left, leaving the tape blank. Machines
in group E move continually to the left, leaving behind
a trail of 1’s. Machines in groups C and G exhibit
similar behaviour to the right.
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The remaining four groups, representing 32
programs in all, will halt at the very first step. So the
longest number of steps that a 1-state program can run
for, starting with a blank tape, and still halt, is 1. Thus
B(1) = 1.

It’s much more difficult to calculate B(2). For a
start there are 12 possible instructions now: OLO, OL1,
OL2, ORO, OR1, OR2, 1L0, 1L1, 1L2, 1RO, 1R1, 1R2.
And there are now four cells in which to put them. So
there are 12 x 12 x 12 x 12 such programs in all. That's
20736 programs to consider.

| once set this as a problem for a post-graduate
course on the Theory of Computation. With the help of
a computer program that they had to write, they
analysed these cases and concluded that B(2) = 6. No
2-state Turing machine program will halt after more
than 6 steps, but there are some 2-state programs that
halt after exactly 6 steps. They are the joint winners in
the 2-state division of the Turing Machine Marathon.
Here is one of them.

0 1
0 |OL1 |1L2
1 |1RO |1L1

Not only did my students able to come up with
2-state programs that halted after 6 steps, they also had
to show, by an analysis of all the others, that any
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program that was still going after six steps would go on
forever.

A two-state analysis was difficult enough so it
would appear that it would be very difficult to write a
program that would handle the general case. Very
difficult, but is it actually impossible? To say that it is
would seem to limit the ingenuity of man (or woman).
Yet the ingenuity of the human mind has limits — a
rather humbling thought. At least we are ingenious
enough to recognise our own limitations.

We can never write a program to compute the
Busy Beaver Function, but at least we can prove that
we can’t, which is perhaps the next best thing.

The Busy Beaver Function can never be
computed. It might be possible to find the values of
B(3), B(4) and so on, but the methods would be forever
changing. No one set of ideas can handle all B(n)’s.
Why not? Read on!

§7.9. Why B(n) is uncomputable

The busy-beaver function is uncomputable. That
IS, there is no Turing Machine which computes B(n) for
all n. Nor could one ever be found. It’s a logical
impossibility. What’s more, the fact that no such
Turing Machine can exist means that no program can
ever be written in any computer language on any
computer — not now, not ever.
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If anyone is ever clever enough to do so, such a
program can be converted to a Turing Machine and he
or she will have created a logical impossibility. Our
whole world of logical reasoning will collapse!

Our proof will be a proof by contradiction. We
suppose that there is a Turing program BEAVER
which computes B(n). That is, if we input the number
n by writing n 1’s on the tape, the output will be B(n)
1’s. Both input and output will be in unary notation.

With  this  supposedly-existing  program,
together with two other programs that do exist, we
construct another program. The two auxiliary programs
are INCREMENT and DOUBLE.

INCREMENT is a 2-state program that
computes the function F(n) = n + 1. In unary notation,
this is very easy to do. We simply put down one extra
1.

INCREMENT O 1
O|1L1|1LO
1]0R2

The other auxiliary program is DOUBLE. It’s a
9-state program that computes the function G(n) = 2n.
It takes a string of 1’s, representing the input n, and
joins a second copy onto it, making a string of twice the
length. This is quite tricky, because after we’ve copied

a 1 we have to mark it in some way to avoid copying it
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again. We do this by temporarily changing the 1to a 0.
After the head has move across to put down the copy
and comes back, it can recognise where the 1 came
from. It then reinstates the 1, moves to the right and
proceeds to copy the next 1.

If you have the patience it’s interesting to work
through this program, say with an input of 3. That is,
the tape consists of 111 on an otherwise blank tape and
the head begins on the left-most 1.

If you can’t be bothered working through it you
can just accept that such a program is possible.

DOUBLE 0 1
O[OLS |[OR1
1]0R2 |[1R1
2]1L3 |1R2
3|0L4 [1L3
41RO |1L4
5|0R6 |1L5
6|0R9 |[ORY
711L8 |1R7Y
8|0R9 |1L38

We now take as many copies of DOUBLE as we
like and build up a Turing program called OMEGA.
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OMEGA
INCREMENT
DOUBLE
DOUBLE
DOUBLE
BEAVER

How many states will this program have? Well,
that depends on how many copies of DOUBLE we’re
taking. Suppose we take n copies. Each copy has 9
states, so that’s 9n states, plus 2 for INCREMENT
plus however many states this mythical BEAVER has.
Since we don’t have a BEAVER program, we can’t
count them, but if BEAVER exists its number of states
must exist. Let’s suppose there are b states in
BEAVER. So OMEGA with n DOUBLE’s will have
On + b + 2 states.

Now what will OMEGA do with a blank tape?
Well, first it will add 1, to get 1, and then it will double
that n times. At this point there will be 2" 1°s on the
tape. If n=4 we’ll have doubled the 1 four times to get
24 = 16.

At this stage OMEGA hands over control to
BEAVER, which will take the 2" as input and proceed
to compute B(2"). So at the end of the day, starting with
a blank tape, OMEGA will halt, leaving B(2") 1°s on
the tape.
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.Steps because it takes one step to put down each 1.
Suppose it runs for s steps. Then s is at least as big as
B(2"). So s> B(2").

Now OMEGA is itself a Turing program, with
9n + b + 2, states, and it halts. So it can’t run longer
than the maximum for all programs of its size. Hence
s, the number of steps that OMEGA runs for must be
less than or equal to B(9n + b + 2), the maximum for
programs in the same class as OMEGA. This means
thats<B(On + b + 2).

Perhaps you need a breather at this point. We’re
establishing a number of inequalities which are
probably more easily considered using symbols. Let’s
recap.

We have:

s = number of steps that OMEGA (with n doubles)
runs for

B(2") = number of 1’s that OMEGA prints

B(9n + b + 2) = maximum number of steps that any
program as big as OMEGA can run for (and still halt).

B(2") <s
OMEGA must run for at least as many steps as the
number of 1°s it prints.

s<BOn+b+2)
B(9n + b + 2) is the maximum for programs in the same
class as OMEGA
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Combining these inequalities together we get:
B(2")<BOn+b +2)
and the final contradiction is just around the corner.

Up till now we’ve not been particular about the
size of n. Any n would have done. But now we want n
to be large. How large? Well, we want n to be large
enough so that 2" is bigger than 9n + b + 2. Unless we
had a specific value for b we could never say explicitly
how large we’d need n to be. But 2" grows
exponentially, and no matter how large b is, eventually
2" would exceed 9n + b + 2.

For example if b = 100,000,000 a value of n =27
would be large enough. The important thing is not to
calculate how big n would need to be, but in
recognising that no matter how big b is, there will
always be a suitably large value of n.

m
A m=9n+hb+2

v
>
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OK, so we choose a value of n that makes 2"
bigger than 9n + b + 2. This will mean that B(2") is
bigger than B(9n + b + 2). (Remember the more steps
available the longer one can make the program run.)

B(2")>B(On +b + 2)

But, and here’s the contradiction, we showed
above that no matter how big n is,

B(2")<BOn+b +2).

These two inequalities contradict one another. The only
way to resolve this contradiction is to deny the only
unsubstantiated assumption we’ve made — the
existence of BEAVER. Therefore no such program can
possibly exist and so the Busy Beaver function is
uncomputable. For each n there must be a value of B(n)
and we may be able to find out what some of these
values are. But a uniform, systematic procedure, that
will work for all n, has just been proved to be
impossible.

§7. 10. Busy Beaver and the Halting

Problem

We’ve given independent proofs of the
Unsolvability of the Halting Problem and the
Uncomputability of the Busy Beaver function.
Actually, each could have been proved from the other.
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If the Halting Problem did have a solution, that is if we
had a program like PREDICTOR, we could calculate
B(n) very simply, as follows:

(1). Go through the n-state programs, one by one and
run PREDICTOR. This will tell us which machines to
disqualify.

(2). Then we simulate the remaining ones, keeping a
track of how long each one runs for. Since we can
guarantee that these remaining candidates will all
eventually halt, this procedure will terminate in a finite
time.

(3). Finally we run through our record of how long each
machine lasted, and take the maximum. This will be
B(n).

The fact that we’ve shown that it’s impossible to
compute the Busy Beaver function shows that our
assumption that we had solved the Halting Problem
must be false.

Now suppose that we did have a program which
could calculate the Busy Beaver function. We would
then be able to solve the Halting Problem as follows:
(1). Given a program, count the number of states, n.
(2). Use BEAVER to compute B(n).
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(3). Simulate the program for the first B(n) steps.

(4). If it halts within the first B(n) steps the answer is
that the program will halt.

(5). If it hasn’t yet halted by the B(n)’th step we’ll know
that it can never halt, because B(n) is the maximum
number of steps for halting programs of that size.

The fact that we’ve shown that the Halting
Problem is unsolvable gives us a contradiction and
hence proves that BEAVER could not exist. So we’ve
just shown that BEAVER exists if and only if
PREDICT exists. Proving that either one cannot exist
is sufficient to show that neither exists. In fact we’ve
given independent proofs for each, so in a sense, each
is doubly proved.

Not that a second proof increases the reliability
of our claim. A proof is a proof is a proof. But the
different methods employed in these two independent
proofs are interesting and instructive.

There are many other computer programs you’d
be wise not to waste time trying to write. A program
that takes as input any two programs and determines
whether or not they are equivalent, is such an
impossibility. It would be nice to have such a program,
particularly when marking students work in computing
classes. If your program is equivalent to the tutor’s then
it’s correct. We could leave it to the computer to
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decide. Such computer marking of programs is actually
used in practice, but they are all limited in their
performance.

No program can possibly test equivalence in all
circumstances. Why? Because it has been shown that
such a program, if it existed, would lead to a solution
of the Halting Problem. And since there is no solution
to the Halting Problem there cannot exist a solution to
the Equivalence Problem.
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SCIENTIFIC

ARTICLE:
AMITERMES LAURENSIS

[This scientific article begins as an accurate account
of a species of termite but, towards the end, it becomes
somewhat fanciful in order to tie in with the material of
the previous chapter. The reader must decide where
fact gives way to fantasy.]

Termites are found in many countries of the
world, notably in Africa and Australia. The aboriginal
word for termite is ‘ngartdan’.

The Amitermes Laurensis is a species of termite
that builds mounds in the Northern Territory of
Australia. They occur in Cape York Peninsula and
eastern Arnham Land. In Queensland, north of the
township of Laura (hence the name of the species),
these mounds are built as thin flat plates, oriented in a
north-south direction. South of Laura the mounds are
conical.

Termites are sometimes referred to as “white
ants” though ants and termites come from quite
different insect groups. In fact termites are more
closely related to cockroaches than to ants. Ants have
elbowed antennae and a waist while termites have
antennae like strings of beads and no waist.

However, like ants, termites are social insects
and have a caste system. There are the reproductives,
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the workers and the soldiers. The latter two castes have
neither eyes nor wings.

The mounds, which can be up to ten metres tall,
are highly organised “cities” with areas for different
activities. The reason for the distinctive north-south
shape of the Amitermes Laurensis species is to
maintain a comfortable interior temperature. In the
mornings the large, flat, eastern face gets the sun while
the western face remains several degrees cooler. The
majority of the colony is to be found on the cooler side
in the mornings. In the hottest part of the day the sun
shines directly only on the northern edge, helping to
keep the mound cool.

Most termites eat wood. They can hollow out
large branches and this is the source of the hollow tubes
from which the Aborigines make didgeridoos.
However the Amitermes Laurensis feed on grass and a
single colony of them can process more grass than a
large grazing animal. Moreover they are much more
efficient in processing biomass than cows or sheep.
They are probably the most efficient life-form on the
planet for extracting energy from plant material. It is
estimated that termites can turn a single sheet of paper
into two litres of hydrogen.

The lignocellulose polymers are firstly broken
down into simple sugars and hydrogen by fermentation
in the termite’s gut and then other bacteria transform
these sugars into energy. Because of their efficiency in
producing so much energy from a single kilogram of
biomass they may one day help to solve the world’s
energy problems.
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The height that a termite mound can reach is
determined by the number of termites in the colony, but
it is not a simple linear relationship. A colony twice as
large as another would not produce a mound twice as
tall. Hence there is a mathematical function, called the
Busy Termite Function. T(n) is the height in
millimetres of a mound that a colony of n termites can
build.

Though we can determine T(n) for specific
values of n, by measuring termite heights and
estimating the size of the colony, it has not been
possible to obtain a mathematical formula for it.

This information is of interest not only to
scientists studying termites, but also to the termite
colonies themselves. They need to know, for example,
whether they should continue to grow as one colony or
to split into two. What is surprising is that termite
colonies can compute the termite function, in a crude
way.

Every termite mound is, in effect, used as a
computer for this purpose just as Stonehenge was a
computer for making simple astronomical predictions.
Indeed a termite mound could be called ‘Sandhenge’ in
view of the fact that the mound is constructed from
particles of sand, held together by termite saliva. It is
ironic that such silicon based computing was going on
long before the invention of the silicon chip.
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Each termite can hold eight grains of sand in its
mandible, or bite, and this can represent a number from
0 to 255. The exact process by which the termites
cooperate to perform the Busy Termite program has yet
to be discovered. What we do know is that the steps,
which must be genetically programmed in their DNA,
cannot compute the Busy Termite function, T(n), for
all values of n because it has been proved that this
function is non-computable!
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8. THE
UNDECIDABLE

§8.1. Axiomatic Systems

As we have said, mathematical truth is
established by logic, starting with some fundamental
assumptions called axioms. One is obliged to accept the
conclusions provided one accepts the logical principles
used as well as the axioms. There is a real sense in
which a set of axioms is a creed, like a religious creed.

Euclid is credited with devising the first set of
axioms — the axioms for Geometry or, as we now
consider it, the axioms for Euclidean Geometry. These
axioms were considered to be ‘self-evident’. Axioms
such as “between any two distinct points there is
exactly one straight line”. Far from being self-evident,
this is based on experimental evidence and has the
same status as a scientific ‘fact’.

Axioms for other mathematical systems were
proposed in the late 19" century. The first were the
axioms of Group Theory. Never mind what it is or what
its axioms are. Rather than self-evident truths they were
considered to simply make up a definition of a group.

These days there is much controversy about gay
marriage. Some regard it as self-evident that ‘marriage’
means an arrangement between a man and a woman. In
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fact, it is merely the definition of the word ‘marriage’.
Certainly there’s no doubt that this is what was implied
by the word over centuries. Others say the definition
should be broadened. There’s a long history of the
meaning of words being broadened. ‘Money’ once
referred to what we now call ‘currency’ — coins and
notes, but the meaning has been broadened to include
electronic transactions. That doesn’t mean that the
meaning of ‘marriage’ should be broadened. There are
strong arguments on both sides. The point I’'m making
i1s that each person who uses the word ‘marriage’
should be prepared to state their definition.

The attitude towards Euclid’s axioms changed in
the eighteenth century. They were no longer considered
to be self-evident, but merely part of the definition of a
particular geometry called Euclidean geometry. Other,
slightly different, sets of axioms were set up for other
geometries. From a mathematical point of view all of
them are correct. It’s up to the scientist, the physicist,
the cosmologist, to decide which is correct for our
universe. And the jury is still out on that question.

A rather different state of affairs exists for Set
Theory. A ‘set’ is a collection of things. In Axiomatic
Set Theory these things are mathematical objects. Now
unlike Group Theory, where there are lots of systems
satisfying the axioms, in Axiomatic Set Theory we’re
attempting to describe a concept that we hold
intuitively.
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88.2. The Russell Paradox

Set theory has come to underlie all of
mathematics, so in a sense it is the foundation for all
mathematics. Up to the end of the 19" century it was
considered that the truths of set theory were self
evident, just as we don’t fuss too much about the logic
we employ. One of the assumptions is that for any
property that things might have there is a
corresponding set, consisting of all the things that have
that property. This is the process of turning an adjective
into a noun. ‘Black’ is an adjective, so there is the set
of all black things. But the philosopher Bertrand
Russell, who was interested in the foundations of
mathematics, pointed out that the set of all sets that do
not belong to themselves is self-contradictory.

Perhaps a bit of notation will help us to
understand this. The fundamental property of sets is
that things belong to them. We denote the fact that the
thing x belongs to the set S by the notation x € S.

If P is a property, like being black, and x is a
thing, we denote the statement that x has the property
P by Px. So if ¢ = a crow and Bx = “x is black™ then Bc
Is a true statement, while Bd is false if d = a dove.
Crows are black but doves are not.

The set that corresponds to the property P is
denoted by {x | Px}. Read it as “the set of all x such that

265



Px (or Px is true). The naive assumption was that for
all properties P there must be a set {x | Px}.

Russell considered the property of something not
belonging to itself — in the sense of set belonging. Here
the something is a set. A set can belong to another set
because it is possible to have sets of sets, or sets of sets
of sets ....

If T is the set of all pairs of distinct whole
numbers then the set consisting of just 3 and 5 would
belong to T. The symbol for “not belonging” is &, just
like the symbol for “not equals” is obtained by crossing
out the equals sign, as in =.

Now some sets clearly don’t belong to
themselves. The set of all positive numbers is not a
positive number. But if there is such a thing as the set
of all sets, then it belongs to itself.

So Russell said, what if S = {x | x ¢ x}? This
would be the set of all sets that are not members of
themselves. This would be the case for most sets we
might think of.

The set of all even numbers is not an even
number. The set of all triangles is not a triangle. But the
set of all infinite sets, if there is such a set, is itself an
infinite set.

You may wonder why I keep saying, “if there is

such a set”. I will discuss this later.
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The question is:
Does S belong to S?

Clearly the answer would have to be either “yes”
or “no”, but let’s consider each possibility in turn.

SUPPOSE that S € S.
Then it must satisfy the corresponding property,
thatis S ¢ S. This is a contradiction.

SUPPOSE that S ¢ S.
Then S satisfies the property that defines S and
therefore S € S. Again, a contradiction.

This seems like one of those logical paradoxes
like the sentence “THIS SENTENCE IS FALSE”. But
we can’t ignore it. Under our naive concept of set
theory such a set exists. If we want to ban it from being
a set we’d better explain to it why it’s being kicked out!

This may also remind you of the argument from
the chapter on the uncountable. The difference is that
in that case there was an assumption that led to the
contradiction. If one can find a different chairman for
every committee then we get a contradiction. Therefore
it is impossible to provide a different chairman for
every committee. It is false that there is the same
number of subsets as elements.
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But with the Russell Paradox there appears to be
no such initial assumption, apart from the intuitively
obvious ‘fact’ that for every property there’s a set of all
things with that property. Well, then, intuitively
obvious or not, this assumption has to go.

Here we have a fundamental contradiction in set
theory. And since we want to build our mathematics on
the foundation of Set Theory, all of mathematics would
fall to the ground if we didn’t remove such a flaw. If
you allow a single contradiction into mathematics you
can prove anything.

| remember one of my lecturers telling me this
and when someone asked him to prove that he was the
Pope, assuming that 0 = 1, he said, “If 0 = 1 then,
adding 1 to both sides, we conclude that 1 = 2. The
Pope and | are two people, so therefore the Pope and |
are the one person. QED.”

Well, you can imagine the fuss that Russell’s
Paradox caused when it was first announced. At least it
caused a fuss amongst those who were bothered about
the foundations of mathematics. Ordinary working
mathematicians just said, “oh, that’s interesting” and
went back to their work. They knew that someone
would fix up the problem, and that they did.

The way of fixing up the problem was to set up
a collection of axioms that made some restrictions on
which properties do lead to a set. There have been
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several formulations but they have all been proved to
be equivalent to one another. The most well-known set
of axioms are called the ZF axioms, after their
proposers Zermelo and Fraenkel. I won’t list them here
because they’re long and sound quite technical.
Basically they mostly say that “if such and such is a set
the so and so is a set”. They are all dependent on
already having some sets with which to make other sets
— except for the first axiom, the existence of the empty
set.

The empty set is the set with no elements. It
doesn’t matter what the no elements are. The set of
unicorns is the same empty set as the set of elves or the
set of whole numbers lying strictly between 1 and 2.
Axiom 1 in the ZF system says: There exists a set
corresponding to the property x = X, that is {x | x # x}
exists. The symbol for the empty set is &. Now you
might be thinking that is silly to have a set with nothing
in it.

“Oh, I have a collection of vintage Rolls Royce
automobiles.”

“Wow! How many have you got?”

“Oh, it’s the empty set.”

Stupid as it might seem, where would we be
without the number zero? For centuries zero was never
considered to be a number. Why have a number for
something that doesn’t exist. Yet, our modern system
of notation for numbers relies on having zero. The
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difference between my bank balance and that of Bill
Gates is just a whole lot of zeros!

Now there’s something rather delightful in the
fact that all of mathematics can be manufactured from
the empty set. First there’s the set {J} that contains
just the empty set. It isn’t the empty set itself because
it does have something in it, even though that
something is empty. Then there is {&, {J}}. This set
contains two sets, the empty set itself, and the set
consisting of the empty set. It might seem that we’re
splitting hairs here, but the distinction between & and
{} is important. In fact, when the number 2 is defined
it is defined in this way of developing mathematics, it
is the set {J, {D}} and 3 is {F, {T}, {9, {}}. If this
seems a rather esoteric way of defining the number 3,
let me ask how you would define it. I’'m sure what you
might come up with would be more intelligible to a
typical kindergarten pupil than {&, {T}, {D, {T}} but
it wouldn’t stand up to the high standard of rigour that
professional mathematicians require.

You might say that this shows that God created
mathematics. Just as God created the world from a void
He created the whole of mathematics from the empty
set! On the other hand, if you are somewhat of an
atheist, at least you’ll find a resonance between
mathematics created from the empty set and the big-
bang theory of how the universe began.
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88.3. Axioms for Mathematics

Almost all of mathematics can be built up from
the following axioms. They
are called the Zermelo-
Fraenkel Axioms, or ZF for
short. Other foundations have
been suggested, but they are
all equivalent to the ZF creed.
For ‘creed’ it is — just as a
religious creed. They are
statements whose truths are
taken without proof. One just
has to believe in them.
Remember that it is not
possible to prove something
from nothing.

In addition, there are assumptions about logic,
we would be considering logical axioms as well. These
will regulate the use of words such as ‘and’, ‘or’ and
‘implies’.

Six of the eight ZF axioms are:

Equality: Two sets are equal if they have precisely the
same elements.

Empty Set: There is a set with no elements.

271



Pairs: If S, T are sets there is a set with just Sand T as
elements.

Powers: If S is a set so is the set of all subsets of S.

Union: If S is a set so is the set of all elements of
elements of S.

Specification: If S is a set and P is any property that
can be expressed entirely in terms of set membership,
then there is a set whose elements are precisely those
elements of S for which the property holds.

The other two axioms are a bit more technical,
so we’ll omit them. A full discussion can be found in
my notes on Set Theory on the website
coopernotes.net. On the basis of these eight axioms
virtually the whole of mathematics can be built.

So can we now be assured that no further
contradiction, like Russell’s Paradox will arise? This
amounts to asking whether the ZF axioms are
consistent. The slightly disturbing answer is that no, we
do not know that they are consistent. Most
mathematicians believe that they are, but most
mathematicians also believe that we’ll never be able to
prove consistency.
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8§8.4. Consistency

A set of axioms is inconsistent if a contradiction
can be validly derived from them. If it is not
inconsistent then it is defined to be consistent. The
easiest way to prove consistency is to come up with a
model for the axioms, that is, an actual interpretation
that satisfies all the axioms.

It’s easy to come up with an inconsistent set of
axioms. For example consider the following axioms for
a super number. The set of super numbers has two
operations, called addition and multiplication, such that
the following axioms hold.

Axiom 1: There is a super number 0, such that:
n + 0 = n for all super numbers, n.
Axiom 2: There is a super number 1 such that:
1+1+1.
Axiom 3: (x +y)z = xy + xz for all super numbers x, y
and z.
Axiom 4: There’s a super number oo such that Ooo = 1,

This system of axioms is inconsistent. Here’s a
proof.

By axiom 1,0+ 0=0, and so (0 + 0)co = Oco.

By axiom 3, Oco + Qoo = Qoo.
By axiom 4, 1 + 1 = 1, contradicting axiom 2.
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Here’s another rather exotic axiomatic system
that I’ve constructed to illustrate the concept of
consistency. | call the system a society. In a society
there’s a set of undefined things called persons and
three undefined relations:

father of,
mother of,
married to

Now the terminology suggests we’re thinking of
family relationships, and certainly that’s what inspired
these axioms. But it must be emphasized that these
things called ‘persons’ are to be considered as
undefined and so we must not make any use of what we
know of actual family relationships.

We assume the following axioms:

Axiom 1: There exists a person.

Axiom 2: Each person has a unique mother and a
unique father.

Axiom 3: If two people have the same mother then they
have the same father.

Axiom 4: The mother and father of every person must
be married.

Axiom 5: If two people have the same father they can’t
marry.

274



Suppose we define a parent to be a ‘person’ who is
either a mother or a father and a grandmother to be
the mother of a parent.

Theorem 1. Every person has exactly two
grandmothers.

Proof: Let Peter be a person.

By axiom 2 Peter has exactly one father, who we’ll call
Frank, and exactly one mother, called Michelle. By
axiom 4, Frank is married to Michelle.

Suppose Frank = Michelle. Then by axiom 4, Frank is
married to himself, contradicting axiom 5.

Hence Frank = Michelle.

By axiom 2, Frank has exactly one mother, denoted by
Mildred and Michelle has exactly one mother, denoted
by Mary.

Suppose Mildred = Mary. That is, suppose Frank has
the same mother as Michelle. Then by axiom 3 Frank
and Michelle have the same father, denoted by Phillip.

By axiom 5, Frank and Michelle can’t marry,
contradicting what we proved earlier.

Hence Mildred = Mary and so Peter has exactly 2
grandmothers.

Notice that we proved the theorem only using the
axioms, and without appealing to our intuition, or
knowledge of society. Now are these axioms
consistent? There’s no point in proving theorems for a
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non-existent system. To do this we need to devise a
model — a concrete example in which these axioms
hold.

Here’s a different model for this system. A
‘person’ is one of the positive integers 1, 2, 3, ... The
father of n is 2n and the mother of n is 2n + 1. Person
m is married to person n if m + n is odd. This system
we shall call a ‘society’.

Axiom 1 and Axiom 2 are clearly true.

Axiom 3: If m and n have the same mother then 2n + 1
=2m + 1 and so 2n = 2m, which means that they have
the same father.

Axiom 4: The father and mother of person n are 2n and
2n + 1. Since their sum is odd, they are married.

Axiom 5: If m and n have the same father the 2m = 2n
and so m = n. Thus m + n is even and so they can’t be
married.

The fact that a model exists for a society, means
that the axioms are consistent. But societies as
described by these axioms can be very different to the
model | had in mind when | devised the axioms. For, in
the arithmetic model, any even number is married to
every odd number, since their sum is odd. What an
infinitely bigamous society! And every person has only
one child!
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In Axiomatic Set Theory we often consider extra
‘optional axioms’. We could add optional axioms to
make it more like the society of real people and their
families. But we would have to be very flexible,
because there some rather strange family relationships
in today’s society.

88.5. The Axiom of Choice

Now, what’s really interesting is that there a few
things that can’t be proved from the ZF axioms which
most mathematicians believe are true. One of these is
the Axiom of Choice, abbreviated to AXC. In a nutshell
the AXC says that if you have a whole bunch of non-
empty sets you can simultaneously choose one thing
out of each of them. This seems an obvious enough
statement but, remember that it says that this is
possible, even if the sets are infinite and even if there
are infinitely many of them.

Of course such a choice is impossible in practice
because it would take infinite time, but we’re not
talking about ‘in practice’. The question is, does such a
choice exist and can they choices form a set? (The last
question is not quite the one that is asked, but it’s near
enough for our purposes.)

The Axiom of Choice has been proved to be
consistent with, and independent of, the ZF axioms.
To show this you assume the ZF axioms and construct
a model in which not only the ZF axioms hold, but also
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the Axiom of Choice. That’s the ‘consistent with’ part.
Then you construct a different model, with a different
definition of ‘belonging to’ that satisfies the ZF axioms
but does not satisfy the Axiom of Choice. That’s the
‘independent of” half of the statement. Putting these
halves together we come up with the statement:

THE AXIOM OF CHOICE IS UNDECIDABLE.

pr— This means that, assuming

' the ZF axioms are consistent,

Axiom of you’ll never be able to prove
Choice:

that the AXC is true. But nor
will you ever be able to prove
that 1t’s false. If ever a
contradiction arises in
mathematics when using the
Axiom of Choice it won’t be
the fault of that axiom. It will mean that an
inconsistency will have been found in the ZF axioms
themselves. If ever a contradiction arises from denying
the Axiom of Choice it will mean that the ZF axioms
themselves are inconsistent, not the denial itself.

| \choosenot |-
to use it |
"

The bottom line is that you are free to choose!
You can believe in AXC or not. Both positions are
logically valid. Naturally, like most mathematicians,
you will no doubt opt to believe in AXC. It sounds so
plausible. But before you become a paid-up member of
the Axiom of Choice religion, let me point out the
following consequence of the Axiom of Choice.
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It has been proved, assuming the ZF axioms,
together with the AXC, that in principle it’s possible to
take a solid ball and dissect it into several pieces and to
reassemble the pieces to make two solid balls of the
same size as the original one!

Your reaction to this is probably to say that this
proves that the AXC is false. After all, such a situation
would contradict the law of conservation of volume,

E b

IT DISPROVES ITSELF

surely. If you take a piece of wood its volume would
remain constant no matter how you cut it up and
reassembled the pieces. That is, ignoring the sawdust
which, of course, we’re doing.

However the law of conservation of volume only
applies if the pieces have a defined volume. If a set of
points is highly fragmented, like a cloud of infinitely
small particles, then it’s not possible to define its
volume.

The way of dissecting the original sphere and
reassembling them is not something one could
replicate, even with precision tools. If it was possible
to convert one ounce of gold into two with a laser
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cutter, the price of gold would plummet! But the
‘pieces’ that are required to perform this magic are so
highly fragmented that their volumes don’t exist.

Needless to say, while most mathematicians are
happy to accept the Axiom of Choice because it
simplifies the statements of many of their theorems,
there’s a determined minority who reject it. A
comforting thought, though, is that no bridge will ever
fall down because its engineer believed or didn’t
believe in the AXC.

OH MAN, WE
"W’E A BRBY. WE SHOULD DRSASSERBLE L e
’L‘*‘ . IT, CHECK ALL THE FARTS g T
e | U 2 ANG AT |T BACK TOGEMER | oroos

(ﬁ %\3 % ol
i . }A\

? %2

The difference between believing or not

believing the Axiom of Choice is more aesthetic than

practical. In this sense it’s rather different to a religious

belief. The Axiom of Choice believers will never wage

war on the infidels, and no mathematician will become
a martyr to his or her belief.

The general consensus is that one should try not
to use the Axiom of Choice, but if necessary one uses
it, and admits that it is “on the basis of the Axiom of
Choice™.
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§8.6. The Peano Axioms

The very first mathematical system we
encountered was the system of the natural numbers:

0,1,2,3, ...

When we did so, in kindergarten or even before,
we were not interested in precise definitions. We learnt
the many properties of natural numbers on the authority
of our parents and teachers. Nowhere did we see a
definition of the number 2, or a precise proof of the fact
that 2 + 2 = 4. We might have experimented with a few
pairs of objects and observed that combining one with
another we got a collection which, when we counted,
gave us 4. Hence we learnt our mathematics as an
experimental science.

Of course we did notice that sometimes it didn’t
work. Pour a litre of water into a bowl containing a litre
of sugar and you’ll find you get a whole lot less than a
litre of sugar syrup. This can be explained, in part, by
the air spaces between the grains of sugar, but to
account for the reduction in volume completely you
need to take the chemistry of solutions into account.

Nevertheless you understood that something
different is going on here and that 1 + 1 = 2 is still valid
mathematically.

One approach to constructing the natural
numbers, and their arithmetic, rigorously is to build
them up as sets of sets of sets within axiomatic set
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theory. Another approach is to define them by a set of
axioms, the Peano Axioms.

We postulate a set of undefined things, together
with an undefined function ‘successor’. You can think
of the ‘successor’ of n as n + 1, written n*, but that
interpretation isn’t specifically part of the axioms.

Axiom 1: 0 is a natural number;

Axiom 2: If n is a natural number then so is its
successor n*;

Axiom 3: There is no natural number n for which
nt=0;

Axiom 4: If S is any set of natural numbers that
contains 0, and contains n* whenever it contains n, then
S is the set of all natural numbers.

On the basis of these axioms we can define
addition and multiplication and prove the basic
properties of arithmetic.

§8.7. Godel’s Incompleteness Theorem
We’ve seen how mathematical systems, such as
Set Theory, can be built up on the basis of a set of
axioms. Provided that a set of axioms is consistent we
can prove meaningful theorems about the system. But
can we prove every true statement from the axioms? If
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we left out one of the set theory axioms there would be
true statements about arithmetic that couldn’t be
proved. A set of axioms is complete if every true
statement about the system can be proved. Are the ZF
axioms complete?

The answer 1s no. Well, then, we’d better add
some extra axioms to make it complete. Unfortunately
that’s not possible. In 1931 Kurt Godel proved that, not
only are the ZF axioms incomplete. No set of axioms
can be constructed for which they will be complete.
What’s more it is not possible for a finite set of axioms
to exist for any formal system in which basic arithmetic
can be formulated, such that the axioms are complete.

He did this by converting every statement in
such a system into an arithmetic statement. He
managed to express to express the statement “this
statement cannot be proved from the axioms” as a
statement about arithmetic. Such a self-referential
statement cannot be proved from the axioms, yet it is a
true statement and corresponds to a true statement
about arithmetic.

Godel’s original proof is very long, and very
hard to read. A much simpler proof by Nagel &
Newman in 2001 converts the statement to one about
computability, and uses the machinery of Turing
Machine to show that completeness would imply that
the halting problem could be solved, which we know is
impossible.
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So here we are left with this unsatisfactory state
of affairs. The ZF axioms on which the whole of
mathematics can be built, cannot be proved to be
consistent, but it can be proved to be incomplete. So it
Is possible that a contradiction could be deduced from
these axioms. But if, as we hope, they are consistent,
they are still incomplete. There are truths about
arithmetic (though not ones we’d be ever likely to
meet) that cannot be proved from any finite set of
axioms! Mathematics is very far from being cut and
dried.

At the heart of Godel’s proof is a very clever
method for converting statements about the system into
arithmetic statements within the system. For a start,
statements are expressed symbolically, such as:

Vx(=(x = 0) ->3y(xy = 1))
which means “for all x, if x is not equal to zero then
there exists y such that x times y is equal to 1.

Godel devised a system for coding these
statements as a number by assigning a code to each
symbol and building up a number for each statement on
the basis of that. So, given a number n one could, if that
n indeed represented a statement, decode it and so
obtain the corresponding statement G(n).

Every possible statement would have a code, but
not every code would correspond to a valid statement.
The numbers involved would be extremely large, but
as this is an ‘in principle’ exercise, that isn’t a worry.
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Now consider the statement that a given
statement S is provable. A proof is just a list of
statements, where each one is an axiom, or a previously
proved theorem, or a logical consequence of the
previous ones, and where the statement of the theorem
is the last in the list. There’s a mechanical way of
testing the validity of a proof and so one could, in
principle, write a computer program for testing whether
a given statement is provable from the axioms. It would
be a case of generating all possible lists of statements
that have S as the last statement, and then testing the
‘proof” for validity.

Godel showed how provability could be
expressed as an arithmetic statement about natural
numbers and so the statement P(n) = “the statement
with Godel number n is provable” can be expressed as
an arithmetic statement and so will have a certain
Godel number. Similarly, the statement N(n) = “the
statement with Godel number n is not provable” has a
Godel number, say g.

Godel then asked whether N(g) is true or false.
The statement N(g) claims that it, itself, is unprovable.
Thus we can obtain, as a purely arithmetic statement,
within the language of arithmetic, a statement which
claims “I am unprovable”. Now such a statement can’t
be false because being false would mean it was
provable and hence true. It must therefore be true and
hence it’s a true but unprovable statement in arithmetic.
But wait! Haven’t we just proved that it is true?
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Certainly we gave a meta-mathematical proof.
But this proof is not one which could be expressed as
an arithmetic proof within the system. Our unprovable
statement is not unprovable in any absolute sense. It
might not even be meaningful to talk about absolute
unprovability. N(g) is unprovable in the relative sense
that no proof of it could ever be constructed which
starts from the axioms and proceeds using the rules of
inference. And even if the axioms and rules were
supplemented by others, so long as they remained finite
in number, the existence of unprovable statements
would remain.
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JOKE: PALINDROME

An Englishman, an Irishman and a Scotsman go
into a bar. An American, who was already in the bar
comes up to the Englishman and says, “Hey buddie, if
you can tell me a good joke I’ll buy you a beer”.

So the Englishman clears his throat and says,
“37”. At this the bar erupts into an uproar of laughter.
The American looks puzzled, but says, “well it appears
that was a great joke, so what’ll you have?”

A little later the American goes up to the
Scotsman and says, “I’ll buy you a whisky if you can
beat that last joke”. The Scotsman stands on a stool,
adjusts his kilt and says, “42”. Once again the bar
erupts into laughter, even louder than before. Several
patrons are so carried away by their laughter that they
roll around on the floor. So the American buys the
Scotsman a Scotch.

A little later the American turns to the Irishman
and says, “You Irish are renowned for your wonderful
humour. | bet you can top that last joke — if you do, I’ll
buy you a pint of Guinness”.

So the Irishman jumps up on the bar, adjusts his
cap, and says, “93”. There’s deathly silence. Not even
a murmur is heard. The American looks puzzled.

“I’ve worked out that you folks must number
your jokes so that all you have to do is to give the joke
number and you all know what the joke is. But back in
the States we tell our jokes in full. Now I'm a little
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puzzled why that last joke fell so flat. What went
wrong?”’

“Ah”, says the Scotsman, “you know what the
Irish are like. They’re always getting things back to
front.”

“Well”, said the American, “would you mind
telling me that last joke in full”.

“Och, aye”, said the Scotsman, “but are ye sure
ye want to hear it. As I said it’s not very funny”.

“Well, yes”, said the American, “I’m fascinated
by British humour”.

“OK”, says the Scotsman, “Joke number 93 goes
like this. An Englishman, an Irishman and a Scotsman
go into a bar. An American, who was already in the bar
comes up to the Englishman and says, “Hey buddie, if
you can tell me a good joke I’ll buy you a beer”. So the
Englishman clears his throat and says, “37”.
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9. THE INEFFABLE

o TN A <
We’ve finished the mathematical content of this
book. This final chapter consists of some
philosophical/theological musings that arise in some
minds as a result of encountering those parts of
mathematics that deal with the edge of the rational
universe. If you have no interest in the fundamental
questions of life then it’s best that you skip this chapter.

Now I wish to make it clear that my purpose in
writing these notes is to communicate what | see as the
nature of mathematics, not to talk about religion. | once
received an email from an angry reader who believed
that this chapter was the ‘pill’ and the previous ones
were the ‘sugar coating’ and that my whole aim was to
sneak religion in under the radar.

If you are one of those who get angry at the mere
mention of anything religious then you’d better not
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read on. But let me emphasise that | am not here talking
about the ineffability of God, but the ineffability of
mathematics. | present some ‘proofs’ of the existence
of God, merely as a vehicle for discussing bad, or
erroneous, logic. But, by the same token, the fact that |
expose such faulty reasoning does not mean that | am
arguing against the existence of God.

| lay no claim to any professional expertise in
either philosophy or theology. But I can’t help going
beyond the mathematics of the ineffable to the
ineffable itself. The word ‘ineffable’ means
‘inexpressible in words’. It’s a word that not only
appears in hymns, describing God, but also in a large
number of nineteenth century novels. We don’t use the
word today, yet there’s as much interest in the
transcendental as ever.

There’s a fundamental contradiction in the desire
to discuss the ineffable — to say something meaningful
about something that can’t be expressed in words. But
by a little distortion of the meaning we can think of the
ineffable as that which transcends logic.

Can one prove that God exists? There have been
many attempts over the centuries. A very simplistic
argument, at least in the Christian tradition, runs as
follows. The Bible says that God exists. The Bible says
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that everything in the Bible { Koy
is the word of God and so CRE
must be true. Therefore
God exists. Put more
simply it says “GOD
EXISTS AND THIS
STATEMENT IS TRUE”.

- =

One need not spend FAITH-BASED CONNECT-THE-DOTS
too much time in refuting this feeble argument. Just one
word is needed — self-referentiality. It would have been
far better if the Bible had made just two claims:

verse 1: verse 2:
Everything

God exists. | in this Bible
is false.

If verse 2 is true then both verse 1 and verse 2
are false. But this leads to a contradiction. Oh well then,
verse 2 must be false. So it is false that everything in
this little Bible is false. So something must be true. It
can’t be verse 2 because we’re assuming that it’s false.
It must therefore be verse 1 that’s true. Therefore God
exists!

This might seem momentarily convincing until

we realise that any statement could have taken the place
of ‘God exists’ — even ‘God does not exist’. The
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problem lies in the fact that verse 2 is ‘self-referential’
— it refers to itself.

One must refrain from considering any sentence
that refers to its own truth. Such self-referential
statements are meaningless and meaningless
statements used in a logical argument can lead to
paradoxes such as the above.

| remember, when training for my accreditation
as a lay preacher many years ago, that | had to study
many of these arguments — mostly with big names like
‘the ontological argument’. I mostly forget what they
were. One of the ones | do remember went like this. We
define God to be a being that’s perfect in every way.
Now existence is more perfect that non-existence. So if
God didn’t exist this would contradict our definition.
Therefore God exists.

The problem with this argument is that it
assumes the existence of a being that is perfect in every
way but who does not exist. The contradiction comes
from assuming simultaneously the existence and the
non-existence and has nothing to do with perfection.

We might define ‘infinity’ as “a number that’s
bigger than every number” and ask the question, “Does
this infinity exist?” Well a number that doesn’t exist
can’t be bigger than every number. (In fact a non-
existent number can’t be bigger than any number.)
Therefore infinity must exist. But, of course, such an

292



‘infinity’ must be bigger than itself, a situation that is
clearly untenable.

The explanation for this paradox is that ‘not
existing’ is not a property of something. It is the
absence of something with a given property. We could
say that a non-existent number can’t be even. But nor
can it be odd. The statement ‘n is even’ is not true or
false of a non-existent number — it is meaningless. In
the same way “God is perfect” is not true or false of a
non-existent God. It is meaningless.

§9.2. Proof by Design

Another proof that God exists, one that was very
popular in Victorian times, is Proof by Design. The
world is a complex, finely balanced precision structure.
If certain parameters were changed by only a small
amount life would not be possible. It could not possibly
have arisen by chance. There must have been an
intelligent Creator. A watch could not come about by
cogs just throwing themselves together. So the universe
must have been created by a Divine Clockmaker.

But then along came Darwin and his Theory of
Evolution. Then came chaos theory, and the theory of
fractals and complexity. It is possible for complexity to
arise from simple rules. This can occur in biology, with
the amazingly complex variety of plant structure
arising from a small number of biological rules. If God
created flowers he didn’t do it the way an artist might
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painstakingly paint a complicated picture. You can’t
argue if something is extremely complicated it must
have been the result of an extremely brilliant maker. On
the other hand you could argue, and many do, that to
create life by a process of evolution that achieves
complexity from a small set of simple rules is so
brilliant that only a supreme mind could have thought
of it.

§9.3. The Mandelbrot Set

You’ll have to make up your own mind on this.
Let me simply describe the most well-known example
of complexity arising from simple rules. Perhaps you
have seen pictures of the Mandelbrot set. It’s a design,
best seen in colour, which is startlingly beautiful. There
IS a boring bit in the middle, usually coloured black,
and an outside that’s almost as boring. It’s the region
between the two that is amazingly complex. If you
zoom in to a part of the Mandelbrot set in this
intermediate areca you’ll see complexity upon
complexity. The more you zoom in, the more
fascinating the pattern becomes. Parts of the pattern,
when you zoom in, look very much like other parts at a
lower magnification, but they’re subtly different. Here
IS a view of the whole pattern.
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Here is a magnified view of one portion.

This pattern is constructed by a computer
program using a few very simple rules. The program
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takes one point at a time on the ‘canvas’ and works out
what colour to make it

It’s a very tedious process, and one would only
attempt to do it with a computer program. One has to
consider every point on the rectangular canvas. Well,
actually there are infinitely many points in a given
rectangle so one chooses a certain resolution and
considers points in a rectangular grid, very close
together. Usually one would make the distance
between the points the same as the resolution of the
computer screen, so that the pixels are considered one
at a time.

Even so, this may involve many thousands of
points. We also have to choose a scale, so that one unit,
in each direction, is equal to so many pixels.

We choose at the outset, along with the scale,
certain numbers N and R. You might, for example,
choose N = 100 and R = 10. The number N represents
the maximum number of steps we will perform for each
point and R represents the radius of a circle whose
centre is at the middle of the screen.

Each point is considered in turn. We move
systematically so that at the end we’ll have considered
every pixel on the screen. A certain calculation is
carried out to determine what colour that pixel should
be coloured and the image is built up in this way.
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This calculation generates a sequence of points,
though these points are not plotted. The sequence starts
at the point whose colour we are determining. There’s
a very simple rule that calculates the next point in the
sequence.

If a point in the sequence stays within the circle,
of radius R, for N steps we colour that starting point
black. If it breaks out of the circle we colour that
original point some colour, depending on how long it
took the sequence to ‘escape’ from the circle The points
in the sequence don’t get plotted, only the starting point
for each step.

We decide on a certain palette of colours. We
might choose red if the sequence breaks out of the
circle after at most 10 steps, orange if it takes up to 20
steps, blue if it has broken out of the circle by the 30™
step, and so on.

Your decisions as to colours, as well as the
choice of N and R, may make your picture look a bit
different to mine, but the overall effect will be much
the same.

A black and white version is far less interesting
but still displays the enormous complexity of the
Mandelbrot set. In this case, if the sequence breaks out
of the circle after N steps it is coloured white. As with
the coloured version, points whose sequence remains
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within the circle for N steps, and quite probably will
remain inside forever, are coloured black.

All that remains is to tell you how we go from
one point to the next in generating each sequence.

If you are not frightened by a little bit of algebra,
here’s the simple rule to move a point one step to create
the next point in each sequence. The centre of the
canvas is the origin for the x-y plane, the point to which
measurements of all other points are referred.

A horizontal axis through the origin is called the
x-axis and the vertical axis through the origin is called
the y-axis. A point has coordinates (x, y) if it is X units
to the right of the origin and y units up. If x or y is
negative then the point is to the left, or below (or both)
of the origin.

The rule for getting the next point (X, Y),
following the point (x, y) in the sequence, is:
X=x2-y?+a,Y =2xy +h.
where (a, b) is the point whose colour we’re trying to
find.

We begin with (X, y) = (a, b).
If you know about complex numbers these equations
can be expressed even more simply as:

Z=27*+a
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where the points are represented by complex numbers
and the complex number a represents the point we’re
starting the sequence with.

You can do these calculations on a spreadsheet,
though to do a whole image would still be far too
tedious. However there are websites on the internet
where you can see the main image and where you can
zoom in on a particular region, just like in Google
Maps.

89.4. Free Will

A fundamental prerequisite to having a religious
faith is a belief in free will. If you don’t have the
freedom to choose to accept or reject the belief, what’s
the point? Mind you, this hasn’t stopped people in
some parts of the world forcing others to accept their
faith at gunpoint.

A common argument against religion is to claim
that you have discovered some psychological or
biological cause for religious belief. Oppressed people,
who have a miserable life, will believe in an after-life
where pain and suffering and poverty will be no more.
It’s just wishful thinking.

Others claim to have discovered a God-gene,
which explains why some of us have a religious belief
and others don’t. Still others claim that all emotions
and all thought is purely a result of biochemical

299



processes. The human brain is influenced by its
biochemistry and your belief in God can be explained
by your diet, or your genetic makeup.

It’s an interesting thought that a belief in a purely
deterministic universe is a contradiction. If | assert that
my thoughts are determined by the laws of physics,
chemistry and biochemistry, then my assertion is also
the result of such deterministic processes. In what sense
could such a belief have any validity? The concept of
truth presupposes that there’s something beyond the
material world. Otherwise what we might call true
statements are just the babble of the mechanistic
automata we call human beings.

But to say that there’s something beyond the
material world is a long way short of believing in any
sort of God. It is intellectually respectable to be an
atheist, but | fail to see how it could be considered
intellectually respectable to believe that human beings
are purely machines, with no free will.

Of course | can believe that my thoughts are valid
truths, while yours are the result of deterministic
processes. It’s an interesting idea that | am the only
reality, complete with free will, and the rest of the
universe is simply an illusion.

Whatever we might claim to believe we all act
as if we have free will. It might be a great illusion but
if 1t 1s we’ll never know it. But of course, as we all
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know, free will is impacted upon by all sorts of external
forces, and even internal, biochemical ones. No-one
can claim to be completely free.

In The Age of Reason by Jean-Paul Sartre, the
protagonist wants to be completely free. As a result he
refuses to make any commitments, because that would
limit his freedom. “If I marry her I’ll remove, or at least
reduce, my chance of marrying someone else.” Every
decision involves a certain reduction in freedom. Better
not make any decisions.

So the person who’s so determined to maximise
his free will is forced to lock himself into a prison of
indecision. He ends up with less freedom. Free will is
a currency that must be spent or it becomes worthless.

| am now going to describe a demonstration that
purports to prove that people don’t have free will, even
in a situation where there appear to be no external
forces. Most people believe that they’re completely
free when they select their lotto numbers, although
certain combinations get chosen less frequently than
others because people believe that they’re not random
enough. Would you choose the numbers 1, 2, 3, 4, 5,
6? It’s just as likely to come up as a more random
sounding choice. The concept of random numbers is
another area where there’s an interface between
mathematics and philosophy, but we’ll not pursue this
here.
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This demonstration is designed to be performed
in public, but you can just read about it and think about
it. You have an audience from which you select five
volunteers. You ask them to stand out the front in a line.
Then you introduce the theme of free will as follows.

“Most people believe that they have free will. On
being asked a certain question we might be influenced
by certain facts, but if we have no facts, such as when
choosing lotto numbers, we believe we can freely make
up our minds.” Check that your five volunteers agree
with this. If any say no, you had better replace them.

“I’m about to give you each a card that asks a
question about one of the other volunteers. The
question won’t even identify who that person is. At this
stage they’ll only be identified as person A, person B,
and so on. You must freely choose an answer, YES or
NO. It doesn’t matter whether you’re correct, or not,
because after all you don’t know yet to whom the
question is referring. Oh, and you mustn’t let anyone
else know your question.”

You give them cards, each of which has the same
type of question:

Will person A give the correct
answer to their question?

except that each person’s question will refer to a
different person: A, B, C, D, E.
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You give each volunteer another card. On one
side it reads YES and on the other side it reads NO,
with these answers written large enough that the
audience can read it. “Now I want you to display your
answer by turning your card so everyone can see that
answer.”

YES

Your volunteers will display a sequence of
YES’s and NO’s. Perhaps they will all be YES, or all
NO. You must select three of the volunteers so that you
have an even number of NO’s. Tell the other two to sit
down. Do this as follows:

How 0 1 2 3 4 5
many
people
say NO?
CHOOSE | YES | YES | YES | NO | NO | NO
YES | YES | YES | NO | NO | NO
YES | YES | YES | YES | YES | NO

You’ll notice that in the last case it is not
possible to choose an even number of NO’s. Luckily
the chance of this happening should be only 1 in 32.
The demonstration | have in mind will not work in this
case. We’ll discuss later what you might do when this
happens.
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Assuming that you have either no NO’s or two
NO’s out of your three chosen volunteers you proceed
as follows. Ask each of the three to display their
question as well as their answer. You now announce
who the questions refer to. It will look as if you have
determined this in advance, but you choose people only
at this time. You’ll only choose someone who is in your
chosen three, and never themselves. In fact, for best
effect, your choice should be as follows, where the
arrow shows who their question refers to.

T

Now ask the two people on the right hand to
swap places so that the people referred to are as shown.

N
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It doesn’t really matter who is referring to
whom, but it will seem a little less artificial if an
adjustment is made. Now you ask any one of the three,
“did you feel that you were completely free to choose
your answer? You didn’t feel constrained in any way?”
They of course will insist that they were free.

“But I will show you that you were forced to
choose as you did because of the answers of the others.
If you had chosen otherwise there would have been a
logical contradiction. Suppose you had chosen
otherwise.”

At this you instruct them to turn their card over.
You then say, “suppose you were correct.” Give them
an other card marked with a tick, signifying that there
answer was correct. Hopefully they can manage to hold
all three cards without dropping any!

\ X

CORRECT INCORRECT

You then infer whether the person that their
question relates to is correct or incorrect. You then give
them a card with the appropriate word. Then you do
this again so that the third person is holding a tick/cross
card. Then you do this one more time so that you
determine whether the first person is correct or
incorrect. Because of the odd number of NO’s this will
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conflict with the card they are holding, and so you will
have reached a contradiction.

“See, if you had answered differently to the way
you did, your answer must have been incorrect,
because a correct answer would lead to a contradiction.
You then take away all the tick and cross cards and start
all over again, this time giving the cross card to that
person to display. You repeat the whole process, and
discover that again you get a contradiction! “See, if
you’d chosen other than what you did there would have
been a logical contradiction. This proves that you had
to choose the way you did!

Here’s an example of how this might work out.
Remember each person’s question refers to the person
on our right, except the last, whose question refers to
the first. Suppose the five answers are as follows.

.

NO NO YES NO

We choose two NO’s and a YES as follows.

NO NO

306



Now we swap the last two and move them together.

NO NO

We get the middle person (it could have been any of
them) to change his answer to see what logical
implications this might have.

YES NO

We suppose that the middle person was correct and you
gave him a card containing a V.

YES YES

\/

The middle person said that the person on his left was
correct (YES) and he was correct (V) so she must be
correct. We give her a tick.
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The third person says that the first would be correct,
and the third person has a tick, so he is right. The first
person gets a tick.

But the first person says that the middle person
will say NO and he is supposed to be correct in saying
this (we have had to give him a tick). But the middle
person says YES. This is a contradiction.

Now suppose the middle person, if he had said
YES, would have been wrong. Give him a card with an
X. We carry out the whole process afresh and again get
a contradiction.
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YES

YES

X

The middle person said that the person on his left
was correct (YES) but he was wrong (X) so she must
be incorrect. We give her a cross.

YES

YES

X

X

The third person says that the first will be correct
and she is wrong, so he will be incorrect. Give the first

person a Cross.

YES

YES
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But the first person says that the middle person
will not be correct, and he is incorrect in saying this, so
the middle person is correct. But the middle person is
incorrect!

There’s a problem if all of the original five
people say NO. We’ll not be able to select three people
with an even number of NOs. This situation would be
quite rare, but if it does arise you have the following
options.

(1) Confess that the demonstration didn’t work.

(2) Upbraid them for not having enough faith in their
fellow volunteers and choose a fresh set of volunteers.

(3) Go through the above analysis to show that you get
a contradiction, no matter whether the first person is
correct or incorrect. Ask them how they have managed
to defy logic and leave it at that. Hopefully nobody will
ask “what has this got to do with free will?”

Remember that as you go round the circle of
three (or all five) if someone has said YES then the next
person will get the same tick or cross as they have, but
every time you strike a NO the ticks and crosses swap
over. Clearly with an odd number of such swaps around
a circle with an odd number of people, there’s bound to
be a contradiction. Of course this only superficially has
something to do with free will! It merely demonstrates
the fact that the questions are indirectly self-referential.
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So, after all this, does God exist? You certainly
won’t find the answer in this book or even the Bible, as
useful as the Bible has been to many people. If there is
a God and He chooses to reveal himself to you, then
you’ll know. Otherwise you have the free will to use
the Axiom of Choice to not believe in God. (Actually
that’s not quite what the Axiom of Choice says but
never mind.)

Oh, you don’t believe in the Axiom of Choice.
That’s a logically valid position to take. What? You
don’t even believe in free will. Then why are you
interested in proving things at all. You’re simply a pre-
programmed robot.

But let me remind you that this is a mathematics
book, not a religious one. My goal is to explain the fact
that logic has its limitations. As a mathematician I’'m a
great believer in it, but I’'m fascinated to discover that
there are impossible, uncountable, undecidable,
unprovable things out there at the edge of the rational
universe.

As the great bard once said:
There are more things in heaven and earth,
Horatio,

Than are dreamt of in your philosophy.

[Hamlet Act 1, Scene 5]
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THE
MATHEMATICIAN’S
CREED

| believe in the validity of standard logic, provided
there is no self-referentiality, direct of indirect.

| believe that Mathematics was created from the
empty set and that the ZF axioms are consistent.

| believe in Mathematical Intuition,
Informed by rigorous proof,

But inspired by Mathematical Imagination
Fuelled by countless cups of coffee.

| believe in the Axiom of Choice

And the Continuum Hypothesis

And whatever other axioms | might find
convenient to use

Provided they’ve been proved consistent with ZF.

| believe that Mathematics contains no facts
But depends on definitions and sets of axioms.

| believe that mathematics is independent of the
material world, so that it can be understood by a
disembodied angel.
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Yet | believe that mathematics is the one great
tool for understanding the material world.

It guides and underpins the Kingdom of Science
And has brought great benefit to mankind.

| believe that great as Mathematics is
There are truths that lie beyond its reach.

Our minds can soar into realms unknown

But more truth lies beyond the edge of the
rational universe.
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POSTLUDE
Disclaimer

Having completed this work | now look back and
contemplate it. Is it all true? I’ve tried hard to ensure
that every statement which is claimed to be true, is
indeed true.

Yet if | had followed the practice of artists in
certain eastern cultures, such as the carpet weavers of
Iraq, I’d have deliberately woven in one or two flaws.
Only Allah is perfect and if | claim to have achieved
perfection I’m setting myself up in opposition to Him,
which may have dire consequences.

But it’s not too late. So just to be on the safe side
let me include the following disclaimer.

At least one assertion in this book is false.

There, that should do it. But wait a bit. That
disclaimer itself can’t help but be true. Why? Well, if
it’s false then every assertion in the book is true,
including the disclaimer itself! But that would be a
contradiction.

So the disclaimer is true and so there must be an
error somewhere else in the book. But where? I’ve
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checked it most carefully, and I haven’t found an error.
Yet simply by adding this disclaimer it forces me to
admit that I must have made a mistake! But for the life
of me I simply can’t find it.

Perhaps, if logic is forcing me to have made a
mistake, maybe I don’t have free will after all. What’s
that you say? Self-referentiality is not allowed? | see,
it’s wrong for me to make any statement about myself.
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PUZZLE ANSWER

The secret to the puzzle lies in the way you join
the two shorter ends.

If you bend the strip and join the ends so as to
make a short cylinder with the longer edges becoming
the circles at each end, you have no more chance of
solving the puzzle than before.

But if you give the strip a half-twist before you
join the ends then what you have is a Mobius Band. (If
your strip is too short to make the half-twist use a
longer strip.) And on a Mobius Band the puzzle can be
solved.

A A
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